摘要:微电网是由可再生能源组成的自主电力系统,可有效实现网络中的功率平衡。由于可再生能源发电机组的间歇性和变化的功率,配电网变得复杂。微电网的重要目标之一是根据态势感知进行能源管理并解决优化问题。本文提出了一种增强型多目标多元优化算法 (MOMVO),用于基于可再生能源的孤岛微电网框架中的随机发电功率优化。所提出的算法用于在各种可用发电来源之间进行最佳功率调度,以最大限度地降低微电网的发电成本和功率损耗。在 6 单元和 10 单元测试系统上评估了 MOMVO 的性能。仿真结果表明,所提出的算法优于其他用于多目标优化的元启发式算法。
摘要:大规模可再生能源发电的固有可变性给微电网能源管理带来了巨大困难。同样,人类行为对电价变化和季节变化的影响也会导致电力消耗的变化。因此,电力系统运行的正确调度和规划需要准确的负荷需求和可再生能源发电估计研究,尤其是短期(小时前、日前)。本研究考虑了总电力负荷和大容量光伏发电的时间序列变化,通过整合预测结果来促进可重构微电网短期最优运行调度框架中的供需平衡。基于双向长短期记忆单元的深度循环神经网络模型 DRNN Bi-LSTM 旨在提供准确的总电力负荷需求和大容量光伏发电预测结果。利用真实世界数据集来测试所提出的预测模型,结果显示,与调查文献中的其他方法相比,DRNN Bi-LSTM 模型表现更好。同时,研究了最优运行调度框架,同时制定日前最优重构计划和可控分布式发电单元的最优调度,将其视为最优运行解决方案。采用基本粒子群优化方法和选择性粒子群优化方法(PSO&SPSO)的组合方法,进行组合、非线性、非确定性多项式时间难(NP-hard)复杂优化研究,旨在最小化微电网在各种等式和不等式约束条件下的总无功功率损耗。包括光伏电源和柴油分布式发电机的可重构微电网测试系统用于最优运行调度框架。总体而言,本研究通过开发的 DRNN Bi-LSTM 模型,为具有电力需求和可再生能源预测的可重构微电网的最优运行调度做出了贡献。结果表明,采用深度学习辅助方法的可重构微电网最优运行调度不仅可以减少无功功率损耗,还可以以经济的方式改善系统。
摘要。本文探讨了 IEEE 33 总线测试系统中电池储能系统 (BESS) 的优化分配,以提高整个系统的性能。使用 ETap 仿真软件进行全面分析,以确定 BESS 部署的战略位置。该研究旨在提高系统可靠性、减少传输损耗并增强各种运行条件下的电压曲线。ETap 平台有助于对 BESS 集成进行详细的建模和仿真,同时考虑负载变化、可再生能源和网络限制等因素。结果证明了所提出的 BESS 分配策略在缓解电压波动、最大限度地减少功率损耗和优化 IEEE 33 总线测试系统的整体运行方面的有效性。这些研究结果为寻求利用 BESS 提高性能和电网弹性的电力系统规划人员和运营商提供了宝贵的见解。
摘要:电力电子系统对现代社会影响巨大。它们的应用旨在通过最大限度地减少工业化对环境的负面影响(如全球变暖效应和温室气体排放)来实现更可持续的未来。基于宽带隙 (WBG) 材料的功率器件有可能在能源效率和工作方面实现范式转变,而这些转变与基于成熟硅 (Si) 的器件相比毫无二致。氮化镓 (GaN) 和碳化硅 (SiC) 被视为最有前途的 WBG 材料之一,它们可以大大超越成熟 Si 开关器件的性能极限。基于 WBG 的功率器件可以在更高的开关频率下实现快速开关,同时降低功率损耗,因此可以开发高功率密度和高效率的功率转换器。本文回顾了流行的 SiC 和 GaN 功率器件,讨论了相关的优点和挑战,最后介绍了它们在电力电子中的应用。
自 19 世纪末的“电流之战”以来,交流电 (AC) 一直主导着配电。然而,近年来,直流电 (DC) 再次兴起,挑战了交流电。随着直流电源(光伏、电池存储)的使用增加、直流终端用途(电子产品、电动汽车、固态照明)以及电力电子技术的进步,建筑物中的直流配电已被提议作为一种在转型中的建筑行业中实现更高效率、成本节约和弹性的方法。许多研究通过功率损耗模拟(Gerber 等人,2018 年;Denkenberger 等人,2012 年;Fregosi 等人,2015 年)或实际测量(Boeke 和 Wendt,2015 年;Noritake 等人,2014 年)估计了在具有现场直流发电、存储和负载的建筑物中直流配电的潜在节能效果。
每当V dd小于VWI时,MRAM受到写作的保护。v dd超过v dd(min)后,启动时间为2 ms,然后才能启动读取操作。这次允许内存电源稳定。/e和 /w控制信号应在电源上跟踪V dd至V dd -0.2 V或V IH(以较低者为准),并且在启动时间保持较高。在大多数系统中,这意味着应用电阻将这些信号拉起,以便如果驱动信号为HI-Z,则在电源上升高时,信号保持较高。任何驱动 /e和 /w的逻辑都应将信号保持高的信号与启动时间更长的启动时间更长。在功率损耗或BrownOut期间,V DD在VWI以下,写入受到保护,并且当功率返回V DD(min)时,必须观察到启动时间。
星际距离非常遥远。电磁传播延迟与距离成正比,传播功率损耗与距离的平方成正比。这些对于星际航天器和探测器的通信来说都是严峻的挑战。那些发射此类任务的人可能希望在人的一生或成为太空科学家或工程师的职业生涯中取得科学成果。这导致这样的结论:此类飞行器或探测器必须以光速 c 的很大一部分行进。这反过来又需要大量能源来传递高动能,这使得质量预算较小的航天器或探测器更加珍贵。然而,总质量较小意味着分配给通信子系统的质量更少。这使得获得重大科学回报变得困难,而这在一定程度上是由科学数据的数量和可靠性决定的。在本教程白皮书中,我们讨论了在质量预算受限的情况下,围绕星际距离航天器或探测器通信下行链路设计的各种问题。
ij ij i j X Y K C = , , , , { } 轴承刚度[N/m]和等效粘性阻尼系数[Ns/m] L 轴承轴向长度[m] M , M est 测量和估计的MMFB质量[kg] M m 金属网环质量[kg] P 功率损耗[W] R 旋转轴的半径[m] R i 金属网环内半径[m] R o 金属网环外半径[m] T tf 顶部箔厚度[m] U d , U v , U f 位移[mm]、电压[V]和力[lb]的不确定性 W 轴承上的总静载荷[N] W S 施加的静载荷[N] W D 轴承组件的自重[N] ρ MM 线密度=金属网质量/(金属网体积×金属密度) υ 泊松比
摘要:随着多电飞机 (MEA) 的发展,一个关键的研究领域是开发可靠、高效、质量轻且与当前和未来飞机的功率和多路复用要求兼容且相称的商业上可行的系统。在旋翼机中,采用多电系统(例如,取代传统的机械和液压系统)的速度被认为比固定翼飞机要慢得多。然而,最近有越来越多的证据表明,四联电动尾桨 (ETR) 是一种技术上可行的解决方案。本文介绍了支持为这种四联尾桨驱动器供电所需的四个独立发电机的最可靠配置的方法,并考虑了每个独立通道功率损耗导致的故障严重程度、目标可靠性设置和支持可靠性分析。得出的结论支持一种特定的混合串并联发电机配置,并确定了与变速箱可靠性相关的进一步工作,以支持配置的可靠性实现。
Ideal Power 已开发并获得了一项创新的专有半导体电源开关专利,该开关名为双向双极结型晶体管 (B-TRAN™)。与传统电源开关(如绝缘栅双极晶体管 (IGBT))相比,B-TRAN™ 的效率显著提高,可将功率损耗降低 50% 或更多(具体取决于应用)。B-TRAN™ 的效率更高,产生的热量更少,因此热管理要求显著降低。这反过来又会显著减小散热所需的表面积,从而可能缩小 OEM 产品的尺寸。此外,B-TRAN™ 提供业界唯一的对称双向操作,与使用 IGBT 和二极管的传统双向开关相比,组件数量减少了 75%。这种高效而独特的对称操作在双向应用中提供了强大的竞争优势,由于交通运输电气化以及向可再生能源和储能相结合的转变,双向应用正在快速增长。