太阳能分布式发电 (SDG) 和风能分布式发电 (WDG) 以及插电式电动汽车 (PEV) 的日益普及将有望减少温室气体排放。然而,它们也带来了诸如生产负荷方面的不确定性、功率损耗增加和电力系统电压不稳定等不利因素,应谨慎处理这些问题以提高可靠性。在这方面,本文提出了一种多目标优化方法,用于确定电力系统中 SDG、WDG 和电容器组 (CB) 的规模和位置,同时考虑到来自 PEV 负荷需求、太阳辐照度、风速和常规负荷的不确定性。研究目标是电压稳定性指数、温室气体排放和总成本。使用非常规点估计法 (PEM) 来处理相关的不确定性,并部署机会约束规划方法来处理平滑约束。通过最大熵法估计输出变量的相应概率分布函数。此外,通过蒙特卡洛模拟 (MCS) 进行鲁棒性分析。将所提出的方法应用于典型的径向配电网。结果表明,PEV 的存在显著增加了负载需求,导致在没有分布式电源的情况下配电系统电压崩溃。然而,所提出的概率方法通过优化可再生分布式电源和 CB 的配置确保配电系统的安全运行。此外,在不同 PEV 渗透水平下比较了确定性和概率性案例的结果。通过模糊满足方法选择了帕累托前沿的最佳权衡解。
随着宽带隙 (WBG) 半导体的新兴发展,电力电子转换器的功率密度和效率不断提高,可能引起更多的开关振荡、电磁干扰噪声和额外的功率损耗,进一步增加器件故障的概率。因此,确定和量化在某些应用中使用 WBG 半导体组装的金属氧化物半导体场效应晶体管 (MOSFET) 的故障对于提高功率转换器的可靠性至关重要。本研究提出了一种基于 MOSFET 寄生参数的新型故障定量评估方法。根据二端口网络理论,MOSFET 等效于由独立的电感、电容和电阻串联组成的一些二阶 RLC 电路。然后,通过频域反射法识别与 MOSFET 物理故障相关的频域阻抗。采用加速老化和键合线切断实验来获得 MOSFET 器件的各种质量状态。结果表明,可以有效量化MOSFET的质量水平及其键合线剥离次数。通常代表MOSFET质量的漏源导通电阻(R DS(on) )在质量退化过程中与漏源寄生电阻(RD + RS )呈现正线性函数关系。这一发现与理论上建立的R DS (on)和RD + RS之间的相关性相符。同时,源极寄生电感(LS )随键合线故障的严重程度而增加,即使是轻微的故障也表现出很高的灵敏度。所提出的方法是一种有效的无需通电处理的功率半导体器件质量筛选技术,可有效避免结温和测试条件(电流和电压)对测试结果的影响,并且不需要设计额外的测试电路。我们在该方法中使用的测试频率范围为10 – 300 MHz,在一定程度上适合为高频WBG功率器件制造提供在线质量监控技术。
可再生能源因低碳经济的优势已成为重要的电力来源。氢气是一种清洁燃料,也引起了全世界的极大关注。可再生能源可用于生产氢能。张等人提出了一种可再生能源和氢气生产的协调控制新方法,加氢站和能源系统的运行经济性得到了改善(张等,2022)。到目前为止,许多工作都集中在可再生能源系统和能源互联网上(张,2018)。值得注意的是,光伏 (PV) 技术一直是可再生能源系统的热点。有着迫切的需求,但在不确定的环境中控制光伏系统仍然是一项重大挑战。傅等人(2019)研究了一种两级光伏结构,他们利用 μ 理论提出了一种有效的光伏电力整合技术。李等人(2019)研究了一种两级光伏结构,他们利用 μ 理论提出了一种有效的光伏电力整合技术。提出了一种最大功率点跟踪方法,可确保在部分阴影条件下稳定的光伏发电(Li等,2021)。随着可再生能源系统中光伏容量的增加,并网配置正在改变能源网络的运行模式(Eftekharnejad等,2015)。为了降低带电池储能的光伏发电系统的成本,郝等提出了一种双层控制方法,该方法也能确保稳定的光伏发电(郝等,2021)。值得一提的是,太阳能光伏项目将在未来电力组合的经济性中发挥重要作用(Vithayasrichareon等,2015)。最大的挑战之一是光伏组件的不确定性使配电网中的分布式发电规划格外困难。人们普遍认为,统计机器学习是建模光伏电力不确定性的有效技术(Fu等,2020)。对于带有光伏发电的配电网,经常需要配置无功功率装置来改善能源网络的性能(Fu,2022)。Fu等人提出了一种自适应无功功率控制策略来平衡电能质量和功率损耗之间的权衡,该方法增强了光伏系统接入电网的友好性(Fu等人,2015)。对于集中式光伏发电,功率因数控制和电压控制是光伏电网连接的关键技术。Awadhi和Moursi发明了一种新型集中式光伏电站控制器,以避免电压不平衡,并且瞬态响应也得到了增强(Awadhi和Moursi,2017)。Emmanuel等人提出了一种基于小波变异性的功率因数控制方法,并报道了功率因数对集中式光伏电站输出影响的分析结果(Emmanuel等人,2017)。学者们对分布式光伏发电的部署和控制进行了大量研究工作,但较少关注分布式光伏发电与集中式光伏发电之间的关系。
吉安甘加理工学院 (1)、奇特卡拉大学工程技术学院 (2)、应用科学私立大学 (3)、乌拉尔联邦大学 (4)、塔吉克斯坦技术大学(以 MS Osimi 院士命名)(5) ORCID:1. 0000-0002-5157-2485;2. 0000-0001-9822-8246;3. 0000-0003-1028-2729;4. 0000-0001-7493-172X;5. 0000-0003-3433-9742;6. 0000-0002-9869-288X; doi:10.15199/48.2024.10.12 能源部门通过微控制器自动进行功率因数校正 摘要。目前,能源部门对每个人来说都越来越重要,包括消费、生产、分配和监控。因此,本研究主要关注通过全自动方式提高功率因数。本文介绍了一种基于物联网 (IoT) 的系统。该系统完全自动化,可提高功率因数,还可监控能源消耗,从而准确计算要显示的所有参数数据,例如功率、电流、功率因数消耗等。可以通过带有 Web 服务器的 IoT Blink 平台通过无线技术访问和获取参数数据。通过控制器单元测量和监控参数数据,通过继电器计算并传输到电容器组,以补偿该系统中的滞后功率因数。最后显示功率因数校正的结果,可以更有效地监控功率损耗和能源消耗。Streszczenie。 Obecnie sektor Energyczny 开玩笑 dla wszystkich ze względu na zużycie, produkcję, Dystrybucję i 监控。 Dlatego też niniejsze badanie koncentruje się głównie na poprawie współczynnika mocy poprzez pełną automatyzację. Wartykule przedstawiono 系统oparty na Internecie Rzeczy (IoT)。系统十项与自动自动化、流行性配置、能源监控、能源参数调整、参数设置、维护、保养współczynnika mocy itp。 Dostęp do danych parametrycznych i ich uzyskanie można uzyskać za pośrednictwem bezprzewodowego technologia Poprzez platformę IoT Blink z Serwerem WWW.参数化和参数化监控是红色网络中最重要的参数,它可以隐藏和隐藏所有相关的参数,并可在任何情况下使用。 w tym 系统。如果您想了解更多有关能源的信息,请参阅我们的信息。 ( Automatyczna korekcja współczynnika mocy za pomocą mikrokontrolera w sektorze energetyczn ym) 关键词:能源、功率因数、物联网、控制器、电容器组。功能:能源、电源、互联网连接、控制器、电池连接器。简介 如今,能源部门以消费、生产、分配和监测为基础,这与直接或间接功率因数有关。功率因数是电力供应系统的重要分析,根据能源部门的所有观点,这更为重要 [1]。并且还确定了电源利用中的所有类型的损耗,例如功率因数和损耗成反比,如果功率因数低,则损耗不断增加,功率因数高,则损耗不断改善。因此,现代工业完全关注这一因素,并使用与无功功率相关的不同类型的技术和用途来提高功率因数。功耗可以通过接近 1 的功率因数来定义,并且保持并联电容器组的帮助以实现功率因数校正 (PFC) 是一种非常成熟的方法 [2]。最近,能源领域的研究主要集中在自动切换方法上,这在实时应用中更为重要。例如使用基于 MCU 嵌入式系统 [3],物联网嵌入式提供所有类型的校正监控,并控制所有类型的切换和监控 [4]。这种概念在现代工业中使用,并根据功率因数获得更多控制,从而提高电气系统的效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是不错的。因此,根据电力标准 [2-9],上述功率因数的改善在电力系统中更为重要。提高电力系统的整体效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是好的。因此,根据电力标准 [2-9],上述功率因数的提高在电力系统中更为重要。提高电力系统的整体效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是好的。因此,根据电力标准 [2-9],上述功率因数的提高在电力系统中更为重要。