摘要 - IntraCorical Brain机机界面已显示出对瘫痪者恢复功能的希望,但是将其转换为便携式和可植入的设备受到高功耗的阻碍。与标准的实验性脑机插图相比,最近的设备已大大降低了功耗,但是,但是stillrequirewiredorwiredorwiredlessconnections可以计算硬件以进行特征提取和推理。在这里,我们在180 nm CMO中引入了一种神经记录和解码(神经)应用程序(神经)应用程序(ASIC),可以提取神经尖峰特征并实时预测二维行为。为了减少放大器和特征提取功率消耗,神经辐射具有一个硬件加速器,用于从物质内尖峰信号中提取尖峰带功率(SBP),并包括具有固定点矩阵加速器(MAU)的M0处理器,以实现效率和效率的分解。我们通过从植入犹他州微电极阵列植入的非人类灵长类动物的SBP验证设备功能验证了功能,并预先指定了一个和二维的手机运动,Mon-键试图使用稳态的kalmanfientate kalmanfilmanfilter lter(sskf)试图在闭环中执行。使用Neurad的实时预测,猴子达到了100%的成功率,并通过
关键功能具有集成压力传感器,可在BMS中进行有效的热失控检测,联合国全球技术法规(UN GTR)在第一步(GTR20第1阶段)中引入了基于性能的要求,这些要求解决了使用过程中电动汽车潜在安全风险的要求,包括与锂离子电池和/或其他可回收电气存储系统相关的潜在危害,尤其是与其他可回收电气存储系统有关。在第二步 - GTR22阶段2中 - 停车时也应适用这些安全预防措施。安全目标是避免对乘员和环境的危害,因此,检测单个电池单元的第一个热失控。警告必须在5分钟的时间窗口内给出警告,然后在乘客舱中发生危险情况。尤其是在停车模式下,使用电压和温度传感器的经典检测方法不足以充分考虑这些法律法规。更好,但还需要更便宜的传感器来足够早期检测这些事件。Infineon因此开发了一个专门为热型Tunaway检测设计的气压传感器,该气压传感器以极低的功率消耗(在停车模式下尤其重要)和短的唤醒时间来测量电池组中的压力。此外,传感器遵循极其重要的功能安全要求,并已根据ISO 26262的规定开发,并被评为ASILB。这对应于当今高压汽车电池的安全要求。
抽象的操作跨传输放大器(OTA)是模拟电路和系统中最关键的块。随着灾难性短通道效应的互补金属氧化物半导体(CMOS)晶体管在深纳米系统下的晶体管,微电学科学家的侧重于设计基于非西硅材料的超细胞性奥塔斯。在过去的几年中,具有惊人的电气和物理性能的全面碳纳米管局部效应晶体管(GAA-CNTFET)吸引了纳米电子研究人员的广泛关注,这是代表高性能纳米级OTA的潜在平台。在这方面,这项工作旨在根据10 nm GAA-CNTFET技术节点提出一个超米型超宽带OTA。在超级尺寸的GAA-CNTFET晶体管的弹道传输操作中,提出的OTA受益,该尺寸可提供优质带宽(2.88 GHz)以及合适的功率消耗(44.8 L W)。所提出的OTA显示在1 V电源电压下的64.5 dB开环增益和59 dB的共同模式排斥比。此外,由于使用间接反馈补偿方法的利用,拟议的基于GAA-CNTFET的OTA呈现了适当的相位边缘(61),并带有较小的补偿器电容器。提到的性能指标仅占据0.198 L m 2的物理区域,提出的GAA-CNTFET OTA有可能被视为基于纳米级CMOS的OTA的替代方法。
** 标示的消耗和排放值是根据法定测量方法确定的。WLTP 测试循环于 2022 年 1 月 1 日完全取代了 NEDC,这意味着自此日期之后,对于获得新类型批准的车辆,将不再提供 NEDC 数据。这些数据并非针对某款特定车辆,也不是产品的一部分,而仅用于比较不同车辆类型。附加设备和附件(附加部件、不同轮胎规格等)可能会改变相关的车辆参数,例如重量、滚动阻力和空气动力学,并且结合天气和交通状况以及个人驾驶风格,可能会影响车辆的燃油消耗、电力消耗、二氧化碳排放量和性能数据。由于测试条件更为真实,测得的消耗和二氧化碳排放量在许多情况下高于根据 NEDC 测得的值。这可能导致自 2018 年 9 月 1 日起的车辆税发生相应变化。 有关 WLTP 和 NEDC 之间差异的更多信息,请访问 www.audi.de/wltp 有关新乘用车官方燃油消耗数据和官方特定二氧化碳排放量的更多信息,请参阅“所有新乘用车型的燃油经济性、二氧化碳排放量和功率消耗指南”,该指南可在所有销售经销店和 DAT Deutsche Automobil Treuhand GmbH、Helmuth-Hirth-Str. 1, 73760 Ostfildern-Scharnhausen, Germany(www.dat.de)免费获取。
靠近水生食物链底部的纤毛微生物要么游动去寻找猎物,要么附着在基质上并产生摄食流来捕获路过的颗粒。在这里,我们使用一种流行的粘性流体球形模型来表示附着和游动的纤毛虫,其滑动表面速度可以提供纤毛流动的解析表达式。我们求解了溶解营养物浓度的平流扩散方程,其中佩克莱特数 (Pe) 反映了扩散与平流时间尺度的比率。对于固定的流体动力学功率消耗,我们问什么纤毛表面速度可以最大化微生物表面的营养通量。我们发现优化进食的表面运动取决于 Pe。对于在有限 Pe 下自由游动的微生物来说,采用“跑步机”表面运动来游动是最佳选择,但在 Pe 较大的极限下,这种跑步机解与保持生物体静止的对称偶极表面速度之间没有区别。对于附着的微生物,在 Pe 低于临界值时,跑步机解决方案是最佳的进食方式,但在 Pe 值较大时,偶极表面运动是最佳的。我们在开环数值模拟和渐近分析中验证了这些结果,并使用了基于伴生的优化方法。我们的研究结果挑战了现有的“最佳进食就是在所有佩克莱特数上最佳游动”的说法,并为海洋微生物中附着和游动解决方案的普遍性提供了新的见解。
摘要:从飞机的角度来看,从涡扇发动机中提取大量电能的可能性越来越大。未来战斗机的功耗预计将比今天的战斗机高得多。该领域的先前工作集中在高涵道比发动机的功率提取研究上。这促使我们彻底研究低涵道比混流涡扇发动机的性能潜力和局限性。建立了低涵道比混流涡扇发动机模型,并模拟了战斗机任务的关键部分。调查显示了高压涡轮的功率提取如何影响军用发动机在飞行范围内不同任务部分的性能。分析得出的一个重要结论是,如果满足特定的操作条件,可以在高功率设置下从涡扇发动机中提取大量功率,而不会对推力和单位燃料消耗造成太大的损失。如果发动机 (i) 以最大总压力比或接近最大总压力比运行,但 (ii) 远离最大涡轮入口温度极限,则功率提取对发动机推力和推力比燃料消耗的不利影响将受到限制。另一方面,如果发动机已经以最大涡轮入口温度运行,则高压轴的功率提取将导致推力大幅下降。所提出的结果将支持对未来战斗机发动机的战斗机任务优化和循环设计的分析和解释,这些发动机旨在实现大功率提取。这些结果对于飞机设计也很重要,更具体地说,对于确定飞机功率消耗者的最佳能源也很重要。
Wireless - technology WiFi 5GHz General Noise level (min) 32dB Noise level (max) 35dB PC compatibility VGA,SVGA,XGA,720p,1080p, UHD 2D compatibility HDR10,HLG,HEVC,PRIME HDR,AV1,MPEG 1/2/4 1080P30fps H.264/H.265 4KP60pfs 3D compatibility No IP rating IP2X OSD / display languages 25 languages: Arabic, Czech, Danish, Dutch, English, Farsi, Finnish, French, German, Greek, Hungarian, Indonesian, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Chinese (simplified), Spanish, Swedish, Chinese (traditional), Turkish, Vietnamese 24/7 operation Yes 360°操作是操作条件0°C〜40°C,最大。Humidity 10-85% Remote control Yes Speaker count 2 Watts per speaker 10W In the box Adaptor (100W) Power cord (TypeC) Remote control Basic user manual 2x AAA Battery Input lag 27.10ms Speaker Info Dolby Audio Networking Wireless - technology WiFi 5GHz Power Power supply Universal AC 100-240V ±10%~ 50/60 Power consumption (standby) 0.5W Power consumption (min) 60W功率消耗(最大)85W电池寿命高达1.5小时的重量和尺寸尺寸(w x d x h)mm 252 x 157 x 62毛重2.73公斤净重1.72 kg
Wireless - technology WiFi 5GHz General Noise level (min) 32dB Noise level (max) 35dB PC compatibility VGA,SVGA,XGA,720p,1080p, UHD 2D compatibility HDR10,HLG,HEVC,PRIME HDR,AV1,MPEG 1/2/4 1080P30fps H.264/H.265 4KP60pfs 3D compatibility No IP rating IP2X OSD / display languages 25 languages: Arabic, Czech, Danish, Dutch, English, Farsi, Finnish, French, German, Greek, Hungarian, Indonesian, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Chinese (simplified), Spanish, Swedish, Chinese (traditional), Turkish, Vietnamese 24/7 operation Yes 360°操作是操作条件0°C〜40°C,最大。Humidity 10-85% Remote control Yes Speaker count 2 Watts per speaker 10W In the box Adaptor (100W) Power cord (TypeC) Remote control Basic user manual 2x AAA Battery Input lag 27.10ms Speaker Info Dolby Audio Networking Wireless - technology WiFi 5GHz Power Power supply Universal AC 100-240V ±10%~ 50/60 Power consumption (standby) 0.5W Power consumption (min) 60W功率消耗(最大)85W电池寿命高达1.5小时的重量和尺寸尺寸(w x d x h)mm 252 x 157 x 62毛重2.73公斤净重1.72 kg
抽象以计算机科学为导向和以神经科学为导向的是开发人工通用智能(AGI)的两种通用方法。在这项研究中,使用用于AGI应用的神经科学方法开发了硅神经元晶体管。神经元行为(“加权总和和阈值”功能)基于互补的金属 - 氧化物 - 半导体(CMOS)负差异电阻(NDR)理论。神经元晶体管由UMC 180-nm商业标准CMOS流程实施,这是有益的,可以实现整个神经网络或与同一芯片上的其他CMOS电路集成。神经元tran-sistor由三个输入V G1,V G2和V G3组成,以及一个控制端子,V con,一个负载端子,V B(负载)和驱动程序端子,V B(驱动程序)。每个输入的宽度为1.8 µm,并且输入分别具有1、2和4填充物,即重量比为1:2:4。v B(负载)和V B(驱动器)使神经元晶体管更加类似于真正的生物神经元,与传统的人工神经网络相比,灵敏度的提高且复杂性较小。以10 kHz的最大频率测量神经元MOS晶体管。它的功率消耗极低,为<10-4 µ w,而占地面积为30×15 µm 2。随着过程特征大小的减小,芯片的工作频率可以增加一个数量级,而其功耗和足迹将减少。关键字:人工通用智能(AGI),CMOSFET电路,人工神经网络(ANNS),硅神经晶体管,负差异抵抗(NDR)分类(NDR)分类:集成电路(内存,逻辑,逻辑,模拟,RF,RF,RF,Sensor)
摘要。为了解决当前传输线的实时监控的问题,本文提出了一种基于事物互联网技术的传输线的基于信息的监视系统。该系统利用了强大的可伸缩性,良好的容错性,低功耗和物联网成本低的特征。以超低功率消耗MSP430微控制器和CC2430射频模块为核心,设计了基于物联网的线监视系统。拟议的设计使用由太阳能提供动力的Zigbee无线传感器网络技术。实现了该行的各种环境参数的收集,传输,处理和判断。通过GPRS将数据信息传输到上计算机的监视中心。当异常情况时,它可以向负责人发送手机简短消息以及时反馈异常内容。分销网络的负载对称性允许开发多个定位过程。对于三相对称方案,采用了基于线供应特征的故障位置方法,对于三相不对称方案,提出了基于线阻抗的断层位置技术。物联网最重要的用途之一是减轻电力传输线故障和灾难。由于物联网的最先进的感应和通信技术,可以提高电力传输可靠性,减少财务损失和更少的停电。这项研究介绍了物联网在电力传输线的在线监视系统中的使用,重点是智能电网的构建和开发特征。结果表明该系统的最高温度差为0.31°C,而最大湿度差为1.38%。该系统提高了电力传输的安全性和可管理性,同时还促进了智能电网和物联网的广泛采用和技术整合。