新型 Anywave MARBLE 系列风冷 UHF/VHF 电视发射机为广播公司提供了最新的先进数字发射机设计,可提供最高水平的性能,但封装却非常紧凑。这些强制风冷固态发射机/转换器的功率范围从 300W ATSC(240W OFDM)到 2200W ATSC(1760W OFDM)(滤波前的功率水平)。它们适用于所有全球电视标准,包括 ATSC、ATSC 3.0、DVB-T、DVB-T2、ISDB-T 和 DTMB。MARBLE 系列融合了 ACT 5X+ 或 9X 数字激励器平台的强大校正功能。此外,这些产品还提供许多业内其他地方所没有的独特功能。
摘要— 在欧盟 (EU),变速驱动器 (VSD) 被认为是具有最显著节电潜力的电机系统技术。在欧盟,到 2015 年,工业和第三产业中应用 VSD 的经济节电潜力分别为 39 和 8 TWh/年。但是,只有一小部分潜力得到了利用。本文介绍了 VSD 的当前市场特征,包括平均价格、安装成本以及每个欧盟国家/地区每个功率范围的总销售额。介绍了选定的 VSD 应用。确定了更广泛应用 VSD 的主要障碍。特别是,介绍了与使用 VSD 相关的电能质量和可靠性问题,并讨论了可能的技术解决方案。
使用 12 瓦直流齿轮电机,内置齿轮,可将速度从 1000 rpm 降低到 250 rpm。与电机相连的滑轮通过连杆相互连接,以相继运行。这三个重物在充电过程中逐一提升,并使用同一台电机放电。混凝土块用作重物,以修改电机功率的功率范围并缓慢放电。用于支撑重物和驱动滑轮的绳索两侧都有结,以触发链接以驱动另一台电机,另一个小自由轮滑轮用于将重物引导到下方,所有组件都安装在带有电气连接的木制框架上。
在 22.5-23.6 GHz 和 25.25-27.5 GHz 频段运行或计划运行的移动系统的典型发射机射频发射(3 dB)带宽范围约为 143 至 865 MHz。发射机峰值输出功率范围为 0.1 W(20 dBm)至 60 W(48 dBm)。但是,根据《无线电规则》第 21.5 条,在 25.25-27.5 GHz 频率范围内,天线输入端的最大功率水平限制为 10 瓦。,并且根据《无线电规则》第 21.2 条,当天线的最大辐射方向在地球静止卫星轨道 1.5 度以内时,在 25.25-27.5 GHz 频率范围内,等效全向辐射功率限制为 24 dBW(在任何 1 MHz 频段内)。。
RD-48是一种多用途设备,它允许扩展超出RS-422/485标准的正常范围的网络。该设备可以用作中继器,以扩展网络的最大距离超过1200 m或以上的设备数量32。它也可以在2到4条线之间交换,也可以用于构建结构化和隔离网络。该设备易于安装其用途构建的积分DIN夹,并通过DIP开关进行所有配置。RD-48旨在用于重型工业应用,广泛的功率范围,电流隔离,瞬态保护以及终止的设计和失败的安全保证在最坏的环境中提供沟通。当RD-48用作中继器时,它会自动检测数据方向,根据RS-422或RS-485标准对数据进行再生并重新启动数据。中继器还支持某些曼彻斯特编码的同步协议。
摘要。本文介绍了在 X 波段工作的高度集成固态功率放大器 (SSPA) 的设计和开发。最后的放大级采用 GaN 技术实现。据作者所知,这是高功率放大器中首次采用垂直方向放置最后的放大级,这可以显著缩小器件的占用空间,同时保持高输出功率和 PAE。该器件使用通过 SPI 接口控制的定制 BIAS ASIC 对整个 RF 链进行全数字控制,确保 SSPA 的高灵活性和稳定性。SSPA 的工作频率范围为 8.025–8.4 GHz,输入功率范围为 –20 dBm 至 0 dBm,输出功率为 20 瓦,功率附加效率 (PAE) 高达 35%。虽然所介绍的 SSPA 的主要应用是地球观测 (EO),但它也可以用于地面部分,例如雷达应用。
波长 1030nm* 脉冲持续时间 900±100fs 额定功率范围 0-50W 0-120W 脉冲重复频率 单次 – 40MHz 最大额定脉冲能量 100μJ 120μJ 快速突发模式下的脉冲周期 25ns 每个突发的可用脉冲数 2-10** 最大突发能量 250μJ 600μJ 功率稳定性 1%rms 光束直径 3.0±0.25mm -1/e 2 在激光输出孔径处 光束质量因数 M 2 < 1.3 发散度(全角,远场)< 600μrad 指向稳定性 < ± 50μrad 偏振 线性(垂直于底座),纯度>100:1 电源要求 230V±10%,单相50/60Hz 1.2kW 最大输入功率 2.3kW 重量 110kg(激光器头)35kg(DC PSU,控制器DC PSU)***
摘要:基于实施部位的最低太阳辐射,PV棒系统通常大小。这意味着在高太阳辐射的日子里,多余的能量可用。这项研究研究了农村卫生中心案件中PV系统中过量能量的潜力。考虑了埃塞俄比亚Tigray农村健康中心典型的PV安装的系统组件。卫生中心的电力负载和来自Mekelle City的太阳辐射数据被用作TRNSYS模型的输入。在每小时和十分钟的时间间隔内对系统中的过量能量进行分析。分析结果表明,在9月至5月的几个月中,可以使用过量的能量,可以热存储和利用。在这几个月中,多余的峰值功率范围从737到841 W,每日平均多余能量范围为2070年至2959 Wh。相比之下,在6月至8月的几个月中,由于太阳辐射较低,无法获得多余的能量。
2018 年,ENPULSION NANO 推进系统的在轨演示标志着液态金属场发射电推进系统首次在太空中测试,也标志着 ENPULSION NANO 的成功推出。此后的四年中,该推进系统成功实现工业化,136 个系统已在 61 艘不同的航天器上飞行。与此同时,基于 FEEP 技术的新型推进系统也得到了开发,扩大了推力和功率范围,并引入了新功能以及从 ENPULSION NANO 的庞大太空遗产中吸取的经验教训。到目前为止,其中两个新型推进系统已经发射到太空。本文介绍了来自多个航天器的 ENPULSION NANO 遥测数据,包括更大的轨道变化机动,并讨论了迄今为止利用 ENPULSION NANO 系统的应用。然后,我们概述了 ENPULSION 推进系统的当前在轨统计数据。我们展示了 ENPULSION NANO 的汇总在轨统计数据,讨论了遇到的挑战并介绍了在不同设施进行的在轨运行、客户 AIT 支持和地面测试活动期间得到的经验教训。
过去几十年来,采用蒸汽压缩的传统制冷已广泛应用于大型工业系统,由于尺寸小的限制,在微电子冷却领域的应用很少。本研究提出了一种高效的机械制冷系统,用于主动冷却大功率微电子系统中印刷电路板上的电子元件。所提出的系统包括几个微型组件——压缩机、蒸发器、冷凝器——作为制冷系统的一部分,旨在适应小规模电力电子设备。该系统经过热优化,可达到高 COP(性能系数)。蒸发器/冷凝器单元使用微通道阵列。先前的研究表明,R-134s 制冷剂提供最佳的 COP/可行性比,同时也最适合微电子应用 [1]。本研究建立了使用 R134a 制冷剂的拟议小型蒸汽压缩制冷机的分析模型。制冷系统经过热优化,冷却功率范围为 20 至 100 W,系统 COP 值高达 4.5。在研究的最后一部分,