背景:随着便携式神经生理学方法(包括脑电图)的出现,研究体力任务期间大脑活动的进展受到了广泛关注,主要是在临床锻炼和体育研究中。然而,日常环境中体力任务的神经特征较少受到关注。方法:脑电图 (EEG) 指标对人脑波动敏感,以极好的时间分辨率反映自发性大脑活动。目的:在这方面,本研究试图系统地审查在实验室和现实世界应用中使用 EEG 指标量化人类在各种体力活动中的表现的可行性。第二个目标是研究使用 EEG 指标量化人类在体力活动中的心理任务表现的可行性。系统评价是根据更新的系统评价和荟萃分析指南的首选报告项目进行的。结果:在 81 项研究中,64 项任务研究侧重于量化人类在体力活动方面的表现,而 17 项研究侧重于量化人类在与心理任务相关的体力活动中的表现。 EEG 研究主要依靠线性方法(包括功率谱,然后是事件相关电位成分的幅度)来评估人类的身体机能。文献中较少涉及非线性方法。大多数研究集中于评估与肌肉疲劳任务相关的大脑活动。上部解剖区域已在多个职业计划中进行了讨论。关于躯干和脊柱的生物力学负荷(这是肌肉骨骼疾病的风险因素)的研究较少。结论:尽管最近人们对研究人类运动功能的神经机制很感兴趣,但评估在自然环境中执行身体任务的大脑特征仍然有限。
目的:我院于2021年2月引进的计算机断层扫描(CT)设备增加了利用人工智能(AI)技术的新型图像重建方法。这种重建方法被称为深度学习重建(Deep Learning Reconstruction,以下简称DLR),佳能称之为高级智能Clear-IQ引擎(Advanced intelligent Clear-IQ Engine,以下简称AiCE)。本研究的目的是评估各重建方法的物理特性和实用性,例如利用AI技术的新型图像重建方法AiCE和目前我院使用的迭代重建方法自适应迭代剂量减量3D(以下简称AIDR 3D)。 方法:通过(1)噪声评估(使用径向频率法测量噪声功率谱(NPS))、(2)低对比度分辨率评估(使用自制模型测量对比度噪声比(CNR))和(3)空间分辨率评估(使用圆边缘法测量调制传递函数(MTF))(1)来评估物理特性。假设成像条件为腹部区域,改变管电流来比较四种重建方法(滤波反投影 (FBP)、AIDR 3D Mid、AIDR 3D 增强 Mid 和 AiCE Body Mid)。 结果:在 NPS、CNR 和 MTF 测量中,AiCE 通常在所有 mAs 值下均显示出最佳结果。然而,在 NPS 测量的低频区域,AiCE 与其他重建方法相比并没有表现出显著差异。 此外,当比较 AIDR 3D 和 AiCE 的重建时间时,AiCE 所花的时间是 AIDR 3D 的 3 到 4 倍。 结论:本研究中,AiCE 在腹部条件下检查的三个物理特性方面优于 AIDR 3D,并且在图像质量方面有用。然而,在考虑重建时间时,需要考虑AiCE图像的运行可能会影响检查进度的可能性。
客观的立体电脑摄影(SEEG)已成为颅内癫痫发作局部iZation的主要方法。当成像,符号学和头皮脑电图发现并不完全一致或定位时,植入的seeg记录用于测试候选癫痫发作区(SOZS)。发现的SOZ可能是针对切除,激光消融或神经刺激的。如果SOZ雄辩,则禁忌切除和消融,因此识别功能表示对于治疗决策至关重要。作者提出了一种新型的功能性脑图技术,该技术在行为任务过程中利用基于任务的电生理学变化,并在儿科和成年患者中对此进行测试。方法记录了20例癫痫患者,年龄从6岁到39岁(12名女性,20例患者中的18岁),并进行了植入监测以识别癫痫发作。每次执行1)记录肌电图时在视觉提示的手,脚或舌头的简单重复运动; 2)记录音频时简单的图片命名或动词生成语音任务。在行为和休息之间比较了Seeg记录功率谱的宽带变化。所有20例患者的运动和/或语音区域的电生理功能映射均已完成。雄辩的表示,通常对应于经典的功能解剖组织以及其他临床映射结果。在健康的大脑,发育或获得的结构异常和SOZ的健康区域中鉴定出了强大的脑活动图。结论基于任务的电生理学映射使用SEEG信号中的宽带变化可靠地识别小儿和成人癫痫患者的运动和语音表示。
推荐书籍: [1] Wai-Kai Chen,“VLSI 技术(工程原理与应用)”,CRC press,2003,第 1 版,ISBN:978-0849317385。 [2] Kwyro Lee、Michael shur、Tor A. Fjeldly 和 Tron Ytterdal,“VLSI 的半导体器件建模”,Prentice Hall,1997,第 1 版,ISBN:978-0138056568。 ECE 505:高级数字通信 学分:2.00 学习时间:2 小时/周 概率与随机过程回顾。无记忆信道上的功率谱与通信:同步数据脉冲流的 PSD、M 元马尔可夫源、卷积编码调制、连续相位调制、无记忆信道上的标量和矢量通信、检测标准。相干和非相干通信:相干接收器、WGN 中的最佳接收器、IQ 调制和解调、随机相位信道中的非相干接收器、M-FSK 接收器、瑞利和莱斯信道、部分相干接收器 – DPSK、M-PSK、M-DPSK、BER 性能分析。带限信道和数字调制:眼图、存在 ISI 和 AWGN 时的解调、均衡技术、IQ 调制、QPSK、O/4-QPSK、QAM、QBOM、BER 性能分析、连续相位调制、CPFM、CPFSK、MSK、OFDM。块编码数字通信:结构和性能、二进制块码、正交、双正交、超正交-香农信道编码定理、信道容量、匹配滤波器、扩频通信概念、编码 BPSK 和 DPSK 解调器、线性块码、汉明、戈莱、循环、BCH、里德-所罗门码。卷积编码数字通信:使用多项式、状态图、树形图和网格图表示代码,使用最大似然、维特比算法、顺序和阈值方法的解码技术 - BPSK 和维特比算法的误差概率性能。
摘要:有几种病症会攻击中枢神经系统,每种病症都有不同的治疗方法。这些治疗方法尽可能地减少或抵消这些类型的病症和疾病对患者造成的后果。因此,神经康复疗法提供了全面的神经护理,以提高患者的生活质量并促进他们在社会中的表现。了解神经康复疗法如何帮助患者的一种方法是通过脑电图 (EEG) 测量他们的大脑活动变化。EEG 数据处理应用程序已在神经科学研究中使用,具有高度计算和数据密集型。我们的提案是一个集成的脑电图、心电图、生物声学和数字图像采集分析系统,为神经科学专家提供工具来评估各种疗法的效率。该提案的三个主要轴是:并行或分布式捕获、生物医学信号的过滤和调整以及实际采样时期的同步。因此,本提案奠定了一个通用系统的基础,该系统的主要目标是成为该领域的无线基准。通过这种方式,该提案可以获得并提供一些生物医学信号的分析工具,用于测量大脑在治疗期间受到外部系统刺激时的相互作用。因此,该系统在必要时支持极端环境条件,从而扩大了其应用范围。此外,根据研究需要,可以根据本提案添加或删除传感器,从而产生受 CPU 内核数量限制的广泛配置,即生物传感器越多,所需的 CPU 内核就越多。为了验证所提出的集成系统,它被用于海豚辅助治疗,用于治疗婴儿脑瘫和强迫症患者以及神经典型患者。样本周期的事件同步有助于隔离相同的治疗刺激,并允许通过功率谱或分形几何等工具对其进行分析。
摘要背景:最近,计算机断层扫描 (CT) 制造商已经开发出基于深度学习的重建算法来弥补迭代重建 (IR) 算法的局限性,例如图像平滑和空间分辨率对对比度和剂量水平的依赖性。目的:评估人工智能深度学习重建 (AI-DLR) 算法与混合 IR 算法对胸部 CT 图像质量和剂量减少的影响,对比不同临床适应症。方法:在用于胸部 CT 条件的五个剂量水平 (CTDI vol: 9.5/7.5/6/2.5/0.4 mGy) 下对 CT 美国放射学会 (ACR) 464 和 CT Torso CTU-41 体模进行采集。使用滤波反投影、两级 IR(iDose 4 级别 4 (i4) 和 7 (i7))和五级 AI-DLR(精确图像;更平滑、平滑、标准、清晰、更清晰)重建原始数据。计算了噪声功率谱 (NPS)、基于任务的传递函数和可检测性指数 (d ′):d ′ 模型检测软组织纵隔结节(纵隔内的低对比度软组织胸部结节 [LCN])、毛玻璃影 (GGO) 或高对比度肺 (HCP) 病变。两名放射科医生独立评估胸部拟人幻影图像的主观图像质量。他们使用常用的四或五分量表评估了纵隔图像的图像噪声、图像平滑度、纵隔血管与脂肪之间的对比度、实质图像的支气管与肺实质之间的视觉边界检测以及整体图像质量。结果:从标准到平滑水平,平均而言,噪声幅度降低(所有剂量水平:纵隔图像为 - 66.3% ± 0.5%,实质图像为 - 63.1% ± 0.1%),平均 NPS 空间频率降低(所有剂量水平:纵隔图像为 - 35.3% ± 2.2%,实质图像为 - 13.3% ± 2.2%),三种病变的可检测性 (d′) 增加。从标准到清晰水平则发现了相反的模式。从平滑到清晰水平,
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
目的作者研究了药物抵抗性局灶性癫痫发作期间低压快活动 (LVFA) 模式的功能连接 (FC) 和脑电图功率的变化。他们假设这种变化将有助于对癫痫手术结果进行分类。方法在 79 例接受立体脑电图 (SEEG) 评估和切除手术的药物抵抗性局灶性癫痫患者中,使用非线性回归 (h2) 和三个区域内/之间的功率谱特性测量围 LVFA 期间的 FC 变化:癫痫发作区 (SOZ)、早期传播区 (PZ) 和非受累区 (NIZ)。计算去同步和功率去同步 h2 指数以评估 LVFA 期间 EEG 去同步的程度。采用多元逻辑回归来控制混杂因素。最后,生成了受试者工作特征曲线以评估去同步化指数在预测手术结果方面的表现。结果 53 名患者显示发作期 LVFA 和不同的 SOZ、PZ 和 NIZ 区域。其中,39 名患者(73.6%)在最后一次随访时实现了无癫痫发作。通过 h 2 分析测量,在 LVFA 期间在无癫痫发作组中发现 EEG 去同步化:与 LVFA 前和 LVFA 后相比,SOZ 内和区域之间的 FC 减少。相反,非无癫痫发作组没有显示出明显的 EEG 去同步化。h 2 去同步化指数,而不是功率去同步化指数,能够在切除手术后对无癫痫发作和非无癫痫发作患者进行分类。结论 通过区域内和区域间 h 2 分析测量的围 LVFA 期间 EEG 去同步化可能有助于识别术后结果良好的患者,并且可能在未来改善致痫区的识别。