在C.892C> T(P.ARG298TRP)上,转录阻遏核与伏隔核核的错义突变在染色体19上导致严重的神经发育延迟(Schoch等,2017)。为了建模这种疾病,我们用同源突变(NACC1 +/R284W)设计了第一个小鼠模型,并检查了E17.5到8个月的小鼠。两个性别的体重增加,癫痫样排放量延迟,并改变了皮质脑电图,行为癫痫发作和明显的后肢紧握的功率谱分布;女性在一个开放式场上显示thigmotaxis。在皮质中,NACC1长同工型(含有突变)从3个月增加到6个月,而短的同工型(在人类中不存在,在小鼠中缺乏AAR284),从产后日开始稳步上升(p)7。核NaCC1免疫反应性在皮质锥体神经元和含有中间神经元的Parval-bumin的核NACC1免疫反应性升高,而在星形胶质细胞或寡头胶质细胞核中不增加。星形胶质细胞过程中的神经胶质纯酸性蛋白质染色减少。P14突变小鼠皮层的 RNA-SEQ揭示了1,000多种差异表达的基因(DEGS)。 神经胶质文字被下调并上调突触基因。 来自上调DEG的顶级基因本体术语与结合后和离子通道功能有关,而下调的DEG富含与代谢功能,线粒体和核糖的术语相关的术语。 突触蛋白的水平已更改,但突触接触的数量和长度在3个月时没有改变。 纯合性恶化了一些表型,包括产后存活,体重增加延迟和核NACC1的增加。RNA-SEQ揭示了1,000多种差异表达的基因(DEGS)。神经胶质文字被下调并上调突触基因。来自上调DEG的顶级基因本体术语与结合后和离子通道功能有关,而下调的DEG富含与代谢功能,线粒体和核糖的术语相关的术语。突触蛋白的水平已更改,但突触接触的数量和长度在3个月时没有改变。纯合性恶化了一些表型,包括产后存活,体重增加延迟和核NACC1的增加。该小鼠模型模拟了一种罕见的自闭症形式,对于评估病理生理学和治疗干预靶标的是必不可少的。
图 6-3a。用于验证 IRIG 时间码准确性的基于 PC 的测试设置。...................................... 6-12 图 7-1。单个 CAIS 总线配置。......................................................................... 7-2 图 7-2。分离 CAIS 总线配置。......................................................................... 7-2 图 7-3。配置检查流程图 (1/2)。............................................................. 7-4 图 7-4。配置检查流程图 (2 / 2)。......................................................... 7-5 图 B-1。热瞬态测试设备。............................................................................. B-2 图 B-2。底座。................................................................................................................ B-3 图 B-3。传感器固定装置支架。................................................................................ B-4 图 B-4。传感器固定装置(黄铜)。................................................................................ B-5 图 B-5。玻璃固定环。............................................................................................. B-6 图 B-6。传感器安装插头。............................................................................................. B-7 图 B-7。闪光灯滑块。............................................................................................. B-8 图 B-8。灯架(大)。......................................................................................... B-9 图 B-9。灯架(小)。.................................................................................... B-10 图 B-10。使用开槽旋转盘和相当于测量应用的热源对传感器进行瞬态热冲击测试的测试设置。.................... B-15 图 C-1。发射器 RF 包络。................................................................................. C-1 图 C-2。晶体探测器输出。.................................................................................... C-1 图 C-3。幅度调制。......................................................................................... C-2 图 D-1。测量值和计算值。...................................................................... D-2 图 E-1。GUI 控制窗口。......................................................................................... E-6 图 E-2。文件浏览器窗口。...................................................................................... E-6 图 E-3。对话框:载波跟踪滤波器。.................................................................... E-7 图 E-4。对话框:符号跟踪滤波器。.................................................................. E-8 图 E-5。外部/接收器/眼图。外部、离散时间散点图。................................................................ E-10 图 E-6。................................................................. E-10 图 E-7。循环同步进度。......................................................................... E-10 图 E-8。表格分析摘要。............................................................................. E-11 图 E-9。图形分析控制窗口。......................................................................... E-11 图 E-10。假锁定眼图。.................................................................................... E-13 图 E-11。假锁定星座。................................................................................. E-13 图 E-12。数据采集设备。................................................................................ E-16 图 F-1。分析仪结构。.............................................................................................. F-3 图 F-2。参考功率谱。......................................................................................... F-4 图 F-3。星座图。............................................................................................. F-5 图 F-4。检测滤波器。......................................................................................... F-6 图 F-5。发射机测试设备。.......................... F-13 图 F-7。................................................................................ F-6 图 F-6。参考信号的比特间隔载波相位轨迹。发射机性能摘要。................................................................ F-15 图 F-8。使用差分编码预测的检测性能。.......................... F-15 图 F-9。基带频谱。................................................................................ F-16 图 F-10。在发射机 RF 端口测量的 OQPSK 星座。................................. F-16 图 F-11。决策样本直方图。................................................................................ F-17 图 F-12。在发射机 RF 端口测量的 OQPSK 星座。................................. F-17 图 F-13。箱间隔相位轨迹。......................................................................... F-18 图 F-14。轨迹偏差频谱。.............................................................................. F-19
其中α是定量时空的每个模型的常数特异性[14 - 17]。此外,全息原理[18-20]和随之而来的协变熵结合[21],这意味着这些距离波动在给定的时空体积中相关。此外,Verlinde和Zurek [22,23]和'T Hooft [24,25]的工作表明,这些相关性可能会延伸到横向上的宏观距离(或等效地,沿着因果钻石的边界[26])。这些理论方法评估了量子波动及其在Hori-Zons上的相关性,并通过将因果钻石的边界确定为视野(特别是Rindler Hori-Zons),可以描述量子时空波动的横向相关性。,Verlinde和Zurek假设热力学特性所规定的能量波动会导致公制在台上通过牛顿电势而与横向相关性的视频波动[22]。'thooft提出,如果地平线的量子波动,黑洞可以服从单位性(例如霍金辐射)是隔离纠缠的[27]。这些理论为波动的垂直两点相关函数提供了具体而几乎相同的预测,作为球形谐波的扩展[22,24,28]。以这种方式得出的相关性分解为球形谐波y m y y m在低L模式中的大部分功能,这激发了以下预测,如上所述,横向相关性在宏观角度分离上延伸到宏观的角度分离。此外,已经提出,CMB中温度波动的角功率谱是这种基本分解在通货膨胀范围上量子波动的球形谐波中的基本分解的表现[29]。重要的是,宏观横向相关性意味着波动在激光束或望远镜孔径的典型直径上是连贯的。如果是这种情况,则通过评估远处对象图像的模糊或退化[16,30]的模糊或降解来设置在量子时空波动上[16,30]。鉴于距离量表的量子时空波动与宏观距离上的相关性和相关性,激光干涉仪对它们具有独特的敏感。因此,对这些波动的最严格约束是由现有的干涉量实验设置的。Ligo,处女座和Kagra协作使用的引力波(GW)干涉仪的设计[31]降低了其对量子时空幻影的潜在敏感性。这是因为它们在手臂中使用Fabry – p´errot腔(或折叠臂,如Geo 600中),这意味着单个光子多次横穿相同的距离。此外,这些仪器的输出的频率低于光线交叉频率。这会导致从单个光线中积累的波动中随机检测到的信号与随后的交叉点的信号平均,从而消除了效果[17]。一个旨在检测量子时空波动的干涉测量实验是Fermilab螺旋表,它由两个相同的共同阶层和重生40 m
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
重新利用全身麻醉的脑电图监测来建立大脑老化的生物标志物:一项探索性研究 David Sabbagh* a,b 、Jérôme Cartailler a,c 、Cyril Touchard c 、Jona Joachim c 、Alexandre Mebazaa a,c 、Fabrice Vallée a,b,c 、Étienne Gayat a,c 、Alexandre Gramfort b 、Denis A. Engemann* b,d,ea 巴黎大学,INSERM,U942 MASCOT,F-75006,法国巴黎 b 巴黎萨克雷大学,因里亚,CEA,帕莱索,法国 c 麻醉和重症监护医学系,AP-HP,Hôpital Lariboisière,F-75010,法国巴黎 d 马克斯·普朗克人类认知和脑科学研究所,系神经病学, D-04103,德国莱比锡和罗氏制药研究与早期开发、神经科学和罕见疾病、罗氏巴塞尔创新中心、F.霍夫曼 - 罗氏有限公司,瑞士巴塞尔 通讯:* david.sabbagh@inria.fr,denis.engemann@roche.com 背景:EEG 是监测麻醉深度的常用工具,但很少在生物医学研究中重新使用。本研究旨在探索在麻醉期间重新利用 EEG 来了解在失去意识的情况下大脑衰老的生物标志物。 方法:我们以大脑年龄估计为例。使用机器学习,我们重新分析了 323 名接受丙泊酚和七氟醚治疗的患者的 4 电极 EEG。我们应用最近发表的参考方法,将稳定麻醉的空间光谱特征纳入基于 EEG 的年龄预测中。当 95% 的总功率低于 8Hz 至 13Hz 之间的频率时,认为麻醉稳定。结果:我们考虑使用丙泊酚麻醉的中度风险患者(ASA <= 2)来探索预测性 EEG 特征。平均 alpha 波段功率(8-13Hz)可以提供年龄信息。然而,通过分析所有电极的整个功率谱(MAE = 8.2y,R2 = 0.65),可以实现最先进的预测性能。临床探索表明,大脑年龄与术中爆发抑制系统相关——通常与与年龄相关的术后认知问题有关。令人惊讶的是,高危患者(ASA = 3)的大脑年龄与爆发抑制呈负相关,这表明存在未知的混杂效应。二次分析显示,大脑年龄 EEG 特征是丙泊酚麻醉所特有的,这反映在七氟醚下的预测性能有限和跨药物泛化能力差。结论:全身麻醉中的脑电图可能实现最先进的脑年龄预测。然而,麻醉药物之间的差异会影响麻醉中脑电图再利用的有效性。为了释放脑电图监测在缺乏意识的情况下用于临床和健康研究的潜在潜力,收集具有精确记录的药物剂量的更大数据集将是关键的促成因素。关键词:全身麻醉、脑电图 (EEG)、脑老化、机器学习、爆发抑制、丙泊酚、七氟醚
点物体模糊图像的模糊程度 恢复原始图像中相对运动模糊的图像的问题。提取相机和物体场景之间的运动模糊程度对于大量应用中的运动模糊识别具有重要意义。这里提出的解决方案是PSF。Cannon [1] 处理了均匀线性的情况,确定了表征运动模糊的重要参数,该参数由方脉冲PSF和模糊的点扩展函数(PSF)描述,仅给出模糊在谱域图像本身中利用其周期性零点的性质。这种识别方法基于模糊图像的概念。这些零点被强调,因为沿运动方向的图像特征是倒谱域的,并且模糊程度的估计不同于其他方向的特征。取决于测量零点之间的间隔。关于 PSF 形状、谱域中零点的均匀性和平滑性的假设不满足,模糊图像在运动方向上的零点间距大于在其他方向上的零点间距。此外,在这个方向上存在各种运动退化的情况,例如加速原始未模糊运动 [2, 3] 和低频振动 [4]。物体。通过过滤模糊图像,我们强调 PSF 特性,而忽略图像特性。这里提出的是最大似然图像和模糊识别方法 [5–7]。这些方法对原始图像、模糊的PSF进行建模,并评估其形状,这取决于模糊和噪声过程。原始图像被修改为二维自回归(AR)过程,PSF参数允许快速高分辨率恢复模糊图像。 1997 Academic Press 具有有限脉冲响应。最大似然估计用于识别图像和模糊参数。模糊模型参数的识别被纳入恢复算法并重新进行模糊图像的恢复。介绍 模糊模型参数的识别被纳入恢复算法并重新进行模糊图像的恢复。介绍 模糊模型参数的识别被纳入恢复算法并重新进行模糊图像的恢复。1.介绍 模糊模型参数的识别被纳入恢复算法并重新进行模糊图像的恢复。成像系统的一个难题是性能下降需要大量计算。由运动引起的图像。当 Savakis 和 Trussell [8] 提出另一种模糊识别方法时,这个问题很常见。使用对原始图像平面的估计,即使相机由人手握住。功率谱(期望值),PSF 估计为 ,通常基于有关恢复残差功率和退化过程之间最佳匹配的信息的准确性。给定理想图像 f (x, y),相应的候选 PSF 与真实 PSF 相似。分级图像 g (x, y) 通常建模为 在本文中,我们开发了一种从运动模糊图像本身识别模糊参数的新方法。g ( x , y ) � � � h ( x � x � , y � y � ) f ( x � , y � ) dx � dy � � n ( x , y ) 根据对运动模糊对图像影响的研究,从模糊图像中提取方向、程度 (1) 和形状估计等模糊特征。虽然模糊识别的动机通常是其中 h ( x , y ) 是线性平移不变 PSF(点扩散图像恢复,这里提出的方法不起作用)和 n ( x , y ) 是随机噪声。将识别过程与恢复过程联系起来。在运动模糊图像中,模糊程度参数是该方法解决一维模糊类型,这在运动退化的情况下很常见。模糊 1 电子邮件:itzik@newton.bgu.ac.il。2 电子邮件:kopeika@bguee.bgu.ac.il。效果被认为是线性的和空间不变的,并且