简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3导航。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3编辑配置实例。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4创建配置实例。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4回顾默认配置值。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5设置SAS VIYA Web应用程序的超时间隔。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6禁用选择通知。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 95设置SAS VIYA Web应用程序的超时间隔。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6禁用选择通知。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9
通常描述,土壤功能的特征是其能够维持微生物活性,营养元素供应,结构稳定性和作物生产的援助。由于土壤功能可以与80%的生态系统服务相关,因此对土地的保护不仅应努力恢复土壤的能力维持植物群的能力,而且还应恢复生态系统的能力。土壤的主要生态系统服务是碳的隔离,食物或生物量生产,提供微生物栖息地,营养回收利用。但是,从未量化由农业土地用途提供的实际土壤功能的实际幅度。营养供应能力(NSC)是恢复土地用途中营养动态的量度。碳积累水平(CAP)是生态系统碳固相的微不足道。生物活性指数(BAI)是通过控制/参考土地在经过处理的土地中所有酶活性的平均值。帽子议员研究了土地使用方式可能影响碳流,保留和封存。CAP为C周期,流量和系统相对操作至高无上的信号。
摘要:本研究旨在开发一种新方法,利用采伐机在作业伐木过程中记录的树干信息,基于遥感预测成熟林分的森林资源属性。参考样地由采伐机数据形成,使用两种不同的树木位置:全球卫星导航系统中的采伐机位置 (XY H ) 和计算改进的采伐机头位置 (XY HH )。研究材料包括 158 个位于芬兰南部的成熟挪威云杉为主的林分,这些林分在 2015-16 年期间被砍伐。树木属性来自采伐机记录的树干尺寸。森林资源属性是针对林分和为四种不同样地大小(254、509、761 和 1018 平方米)的林分生成的样地编制的。建立了基于采伐机的森林资源清查属性与样地遥感特征之间的预测模型。获得了林分水平的预测结果,基部面积加权平均直径 (D g ) 和基部面积加权平均高度 (H g ) 对于所有模型替代方案几乎保持不变,相对均方根误差 (RMSE) 分别约为 10–11% 和 6–8%,偏差较小。对于基部面积 (G) 和体积 (V),使用任何一种位置方法,最多只能得到大致相似的预测结果,相对 RMSE 约为 25%,偏差为 15%。在 XY HH 位置下,G 和 V 的预测几乎与 254–761 平方米内的样地大小无关。因此,基于采伐机的数据可用作遥感森林清查方法的地面实况。在预测森林清查属性时,建议利用采伐机头位置 (XY HH ) 和最小地块面积 254 平方米。相反,如果只有采伐机位置 (XY H ) 可用,将样地面积扩大到 761 平方米可达到与使用 XY HH 位置获得的精度相似的精度,因为较大的样地可缓和确定单个树木位置时的不确定性。
所有权和能源使用。他们注册生产者,验证属性和产出量,签发 EAC,并在参与账户持有人之间转移 EAC。虽然一些跟踪系统的重点是可再生电力,但一些美国跟踪系统(NEPOOL GIS、NYGATS 和 PJM GAT)为所有发电(包括核能和化石能源)签发和跟踪能源属性证书。这些被称为“证书”,但一般来说,它们是 EAC,允许跟踪管理员核算所有发电并适当分配属性。在某些州,这对于满足州环境或能源披露要求很重要。11 要退出 EAC,索赔人必须在跟踪系统中拥有一个帐户,并且必须将 EAC 转移到退出子帐户中,从该子帐户中不能
本报告重点关注 MD/HD 车辆的充电要求以及与轻型车辆 (LDV) 基础设施的协同作用。由于相关模型输入正在开发中,并且几年内不会建立,因此本分析更倾向于定性而非定量,因为电动汽车部署在 LDV 领域比 MD/HD 领域更成熟。本报告首先概述了 MD/HD 车辆类别和充电类型,包括车库和住宅充电等(第 2 节)。第 3 节分析了现有 MD/HD 车辆的基地(过夜停留位置),重点是车库和住宅基地,并讨论了对充电基础设施的影响。第 4 节讨论了确定 MD/HD 车辆是否、何时以及在何处可以利用 LDV 充电基础设施而不是需要专用充电器的关键特征。这些考虑因素包括电力需求、连接器、物理空间要求、付款考虑因素以及对电网的影响。第 5 节总结了适合近期电气化的 MD/HD 车辆的共同特征,并总结了电动 MD/HD 车辆市场的前景。结论(第 6 节)总结了报告的发现并概述了未来研究的领域。
在Junos OS中,对任何特定路由协议并非特定的路由功能和功能统称为独立于协议的路由属性。这些功能通常与路由协议相互作用。在许多情况下,您将独立的属性和路由策略结合在一起以实现目标。例如,您使用独立于协议的属性来定义静态路由,然后使用路由策略,可以将静态路由重新分配到路由协议,例如BGP,OSPF或IS-IS。
链接预测是图数据中的一个基本问题。在其最现实的环境中,问题包括预测一组断开对的节点对之间的丢失或将来的联系。图形神经网络(GNN)已成为链接预测的主要框架。基于GNN的方法将链接预测视为二进制分类问题,并处理极端类不平衡 - 真实图非常稀疏 - 通过对(随机均匀)进行抽样(随机均匀),不仅是用于培训,而且用于评估的脱节对。但是,我们表明,在平衡设置中链接预测的GNN的报告并不能转化为更现实的不平衡设置,并且在han-dling稀疏性方面,基于更简单的基于拓扑的方法通常会更好。这些发现激发了基于相似性的链接预测方法,该方法采用(1)基于节点属性的图形学习来增强拓扑启发式启发式,(2)解决类不平衡的排名损失,以及(3)负面采样方案,通过图分划分有效地选择硬训练对。实验表明,冰淇淋的表现优于现有的基于GNN的替代方案。
纳米肥料是最重要的农业领域,由于其能力提高产量,提高土壤生育能力,减少污染并为微生物带来了有利的环境,因此吸引了土壤科学家以及环保主义者的注意。因此,考虑到这些方面,在拉比(Rabi),2022-23期间进行了野外实验,以评估“纳米尿素对生长,产量属性和小麦在灌溉条件下的影响”。该试验在随机块设计中具有不同的13处理和三种复制。结果表明,不同纳米尿素治疗的影响对小麦的产量和产量属性显着影响。通过在分丁和接头时建议的N +两种尿素(5%)的治疗记录谷物产量(54.08 Q/ha)(T 4)。在耕作和接头时建议的N +两次喷雾剂(t 4)的n +两种喷雾剂(t 4)的相同处理下,发现了更高的生物量产率(140.96 Q/ha)。归因性字符的收益率也会因不同的治疗而显着影响。明显更高的植物高度(82.40厘米)和每平方英尺的有效分ers米(505)通过建议N +两次尿素喷雾剂(5%)在分丁和接头(T 4),而治疗对植物支架的处理没有影响,1000粒重(G)和每个峰值的谷物数量。
以人工智能、云计算、区块链、虚拟现实等为代表的新兴数字技术的成熟和商业化,正在催生一种新的、更高级的经济形态,即数字经济。数字经济不同于传统的工业经济,它具有清洁、高效、绿色、可循环等特点,代表并推动着全球经济发展的未来方向,尤其在突如其来的新冠疫情这一持续性灾难的背景下。因此,科学合理地建立数字经济发展综合评价模型至关重要。本文首先在文献分析的基础上,人工采集数字经济发展相关指标,然后利用灰色动态聚类和粗糙集约简理论进行筛选,从数字创新动力支撑、数字基础设施建设支撑、国家经济环境与数字政策保障、数字融合与应用四个维度构建数字经济发展评价指标体系。其次采用群体FAHP法、熵值法和改进的CRITIC法计算主观权重和客观权重,并融入方差最大思想计算组合权重,结合灰色关联分析和改进的VIKOR模型对2013—2019年中国31个省市的数字经济发展水平进行系统评价。实证分析结果表明,中国数字经济整体发展呈现叠加上升趋势,四大经济区数字经济发展不均衡。最后对中国省区数字经济建设提出了有针对性的意见。