Sugar ..................................................................................... 208 Saturated and unsaturated fat ............................................... 209 Cholesterol ............................................................................ 210 Protein .................................................................................. 211 Choline .....................................................................................................................................
在1991年,著名的法国科学家皮埃尔·吉尔斯·德·基因斯(Pierre-Gilles de Genes)因其在软物质(尤其是聚合物)上有影响力的研究而获得诺贝尔奖。他被定义为软物质的创始父亲。在他的诺贝尔演讲(https://www.nobelprize.org/uploads/2018/06/gennes-lecter.pdf)中,他将软物质又称复杂的液体描述为具有两个主要特征的材料 - (a)复杂性和(b)灵活性。软物质的子类别(例如 - 颗粒材料,聚合物,泡沫,胶体等)是根据Pierre-Gilles de Gennes的定义定义的。在NASA GRC,我们正在推动月球表面软物质基础研究的边界。关于月球表面科学,我们专注于开发与颗粒材料和生物柔软/活跃物质有关的能力,以促进ISRU和Bio-ISRU能力的未来努力。为了在月球环境的局限性下实现软物质研究的基本目标,科学能力必须是小型,灵活,模块化,货架上的,而重点需要更多地是发展跨学科能力,以利用AI/ML和计算机愿景的最新增长,以增强我们对我们对基本科学的理解。此策略将使我们能够在发射,安装和占用Lunar Surface
免责声明:本文档中的信息旨在帮助加拿大医疗保健决策者,卫生保健专业人员,卫生系统领导者和政策制定者做出明智的决策,从而提高卫生保健服务的质量。虽然患者和其他人可以访问此文件,但仅出于信息目的就可以使用该文件,并且对任何特定目的的适合度都没有陈述或保证。本文档中的信息不应用作专业医疗建议的替代品,也不应用作在任何决策过程中照顾特定患者或其他专业判断的临床判断。加拿大卫生药物和技术机构(CADTH)不认可任何信息,药物,疗法,治疗,产品,过程或服务。
脑干控制呼吸模式并根据代谢需求进行调整。延髓和脑桥是调节呼吸的关键脑干结构。聚焦吸入技术可以调节大脑活动,增加与放松和注意力相关的α波活动。神经影像学研究表明,深呼吸和控制呼吸可以增强前额叶皮层和前扣带皮层的活动,这两个区域与注意力和情绪调节相关。定期进行聚焦呼吸练习可以增强神经可塑性,并增加与学习和记忆相关的大脑区域的灰质密度。因此,本研究旨在探索聚焦吸入技术作为一种实用工具的潜力,该工具可以通过促进放松、改善神经可塑性和支持情绪健康来增强认知功能。
简介小胶质细胞被归类为中枢神经系统(CNS)的驻留免疫细胞,并将其指出为神经脱发疾病开发的关键参与者1。通过研究小鼠大脑,在八十年代末和九十年代初发现了这些细胞,并表明小胶质细胞是在整个大脑和脊髓中分布的单核细胞,占脑parenchyma 2的胶质细胞群体的20%以上。小胶质细胞是脑实质中唯一的免疫防御。感染的这些免疫警惕性促进并促进了先天和适应性反应,并参与了许多不同的作用,例如突触和联系的形成,神经元增殖和分化,以及大脑体内平衡的主要经济体在健康和疾病中。通常,小胶质细胞会在炎症条件下通过激活强烈的免疫反应并支撑组织修复和重塑4来保护大脑4。小胶质细胞通过促进形态变化有效地对病原体和脑创伤有效反应。他们通过迁移到发生感染或受伤的部位来应对病原体和伤害,改变其形态,并破坏病原体以去除受损细胞和碎屑5,6。这些神经胶质细胞分泌细胞因子,趋化因子,活性氧和前列腺素,作为免疫反应的一部分7,8。相反,小胶质细胞可以调节并增加过度刺激时的大坝为中枢神经系统,从而产生许多作者命名为反应性神经病的条件9,10。因此,已经研究了许多不同类型的感染,脑创伤,神经退行性疾病和其他几种疾病11-14的小胶质细胞反应。然而,术语“反应性神经病”,“活化的微胶质”或“过度活化的小胶质细胞”可能不是代表几种形态学,生理,
UW 虚拟大脑项目 TM 是一个通过 3D 叙述图表进行大脑交互式演练的系统。它由纽约大学阿布扎比分校 (NYUAD) 的神经影像中心和威斯康星大学麦迪逊分校的威斯康星发现研究所 (Rokers & Schloss, 2021) 创建。他们使用他们的系统进行了类似的实验,以比较头戴式 VR 与桌面 VR 的有效性。该研究的结果表明,学生的记忆力并没有显著提高。虽然效果并没有显著提高,但他们也表明,VR 作为学习平台对学生来说更有趣。他们指出,他们的研究结果支持这样一种观点,即截至目前,VR 不能取代课堂学习,而是一种让课堂更具活力的有效工具 (Rokers & Schloss, 2021)。
cajal-retzius细胞(CRS)是发育中的大脑皮层的短暂神经元类型。多年来,它们已被证明或提议在新皮质和海马形态发生,回路形成,脑进化和人类病理学中发挥重要作用。由于其寿命短,CR被描绘成纯粹的发育细胞类型,其产生和主动消除都是正确的大脑发育所必需的。在这篇综述中,我们提出了一些发现,使我们能够更好地欣赏这种非常特殊的细胞类型的身份和多样性,并提出了应该被视为Cajal-Retzius细胞的统一定义,尤其是在与非哺乳动物物种或类器官一起工作时。此外,我们强调了最近的一系列研究表明,CRS在功能和功能障碍性皮质网络组装中的重要性。
怀孕期间的孕产妇营养差会损害胎儿的发育。此外,植入前期很容易受到疾病不良编程的影响。在这里,我们研究了小鼠母体高脂饮食在植入前或整个怀孕期间健康的非肥胖大坝中的影响,以及哺乳对代谢相关参数的影响以及成人后代中与代谢相关的参数和海马神经发生。雌性小鼠在整个妊娠和哺乳期(高脂饮食组)或高脂饮食(高脂饮食组)或高脂饮食中,或仅在植入前(胚胎高脂饮食组,高脂饮食,高脂肪饮食),直到e3.5,此后正常脂肪饮食)。产妇高脂饮食会导致后代的变化,包括收缩压升高,昼夜活动,呼吸商和高脂饮食女性的能量消耗,增加的收缩压和呼吸商,但在高脂饮食男性中降低了EN ERGY支出。高脂饮食雄性具有较高的新生神经元密度,并且在齿状回的齿状神经元中的密度较低,这表明暴露于母体高脂饮食可能调节成人神经发生。母体高脂饮食还增加了高脂饮食雄性和女性海马中星形胶质细胞和小胶质细胞的密度。通常,观察到分级反应(也不是脂肪饮食<胚胎高脂<高脂饮食),只有3天的高脂饮食暴露改变了后代能量ME Tabolism和海马细胞密度。因此,在神经分化开始并独立于产妇肥胖之前,早期的母亲暴露于脂肪饮食,足以使后代能量代谢和脑生理学以及终生后果的后代。
生化模型解释了Psy-Chobiological Life的复杂机制。他仍然无法解释从无生命的过渡到生物的过渡。阈值在哪里,它的本质在哪里,生化过程在与意识及其对躯体的影响及其对SOMA的影响相干,反之亦然?类似的问题是在其他心理过程中,它们的性质不适合生物的生物化学模型,并且根据生物化学相互作用是无法解释的,同样,根据量子过程(包括波浪物理学)来描述它是更容易的。它与心脏或其他器官的功能相似,在此,仅考虑细胞的生化过程,而忽略了生物电子过程。人不仅是一种纯粹的生物结构,而且还包含生物化学,生物电子,信息和控制论过程的基础,这些基础负责塑造人的心理生物学过程。科学中的当代生物系统在局部结构水平上被考虑,忽略了能量和信息结构。通过将认知重点转移到能量和信息结构上,该生物可以被视为信息的产生者:电磁,孤子,声学,声学,自旋和生物质量。这种生物电子结构以他的电子个性创造了同性电子。2。心脏传导系统
昼夜节律参与了身体许多方面的调节,包括细胞功能,身体活动和疾病。昼夜节律障碍通常早于神经退行性疾病的典型症状,不仅是非运动症状,而且是其发生和进展的原因之一。神经胶质细胞具有调节其功能以维持脑发育和稳态的昼夜节律。新兴证据表明,小胶质细胞时钟参与了许多生理方面的调节,例如细胞因子释放,吞噬作用,营养和代谢支持,以及小胶质细胞时钟的破坏可能会影响帕金森疾病的多个方面,尤其是帕克森疾病的多个方面,尤其是神经毒素的方法。在此,我们回顾了昼夜节律控制健康和疾病功能的最新进展,并讨论了神经退行性疾病中小胶质细胞钟的新药理干预措施。