可穿戴设备面临的挑战,例如在空中固件更新期间动态恶意软件注入,从而利用可信赖的执行环境;由于加速裂纹技术而导致的量子式加密协议的漏洞;旨在损坏实时决策中使用的机器学习模型的对抗性人工智能攻击,导致错误分类或操作中断;混合沟通违反了BLE,NFC和5G频道的协调攻击,以损害多层安全性;使用声学加密分析和电磁分析提取敏感密码键的侧向通道攻击;通过受损的数字双胞胎创建综合身份,使得未经授权访问集成系统;以及边缘加工管道中的逻辑炸弹部署,引入在特定操作条件下激活的潜在漏洞。
一个关键挑战在于涉及的大量敏感数据。精确医学需要对个人健康信息(PHI)的收集,存储和分析,包括基因组数据,病史和生活方式因素。这种敏感信息是网络犯罪分子非常追求的,他们可以利用数据系统中的脆弱性来窃取,操纵或出售它以获得非法收益。数据泄露可能会对患者产生毁灭性的影响,从而导致身份盗用,歧视甚至身体上的伤害。精密医学的结构性质,通常涉及研究人员,医疗保健提供者和制药公司之间的合作,从而引发了数据安全方面的额外复杂性。确保跨多个实体的安全数据共享而不损害隐私需要强大的加密协议,并访问控制机器 -
我们分析了Delta Chat上的加密协议,Delta Chat是一个分散的消息传递应用程序,该应用程序使用电子邮件基础架构进行消息传递。它通过实现AutoCrypt标准和Secure Join协议提供端到端加密,均使用OpenPGP标准。DELTA CHAT通过类别的高风险用户(例如记者和活动家)的采用,但更普遍的用户在受互联网审查影响的地区中的用户使其成为强大的对手的焦点。然而,迄今为止尚未研究其协议的安全性。我们在其自己的威胁模型中描述了Delta Chat上的五次新攻击,从而利用了其Secure Join和AutoCrypt实现的交叉协议交互,以及其OpenPGP库RPGP中的错误。调查结果已向实施修复程序的Delta Chat团队披露。
Moisees Moisees Moraen的最重要的科学成就之一是开发了使用多项式优化技术来表征量子beho的新型框架。通过扩展传统方法以结合部分交换变量,作者提供了一种创新的方法来处理展示本地结构的物理系统,从而提高了计算效率和准确性。这项工作不仅可以提高对广义铃铛场景的理论理解(测量值对重叠子系统作用,而且还引入了在量子信息处理中具有实际应用的功能强大的代数工具。这些贡献以严格的数学基础为基础,开放的新途径用于分析不确定性关系,加密协议以及Qu Antum机械师的基本限制。作者具有具体物理现象的抽象代数方法的桥接能力标志着对该领域的宝贵和原始贡献。
近年来,量子计算被认为是对我们日常通信中使用的安全 / 隐私算法的完整性的严重威胁。特别是,它促使人们加速研究捍卫后量子世界的密码学。为了了解我们当前使用的哪些加密协议容易受到此类攻击,我们旨在自己使用或模拟量子计算机来诊断加密弱点。最近的研究成果如 [6]、[18]、[19] 反映了这一点。为了优化针对给定协议的 Grover 搜索算法密钥恢复攻击,我们需要一个负担最小的协议量子电路实现。一个与计算负担成比例的指标是电路的深度。在量子计算机模拟中,深度优化的量子电路减少了计算模拟攻击结果所需的时间。在量子计算机的物理实现中,深度优化的电路减少了组件之间的接近度,从而减少了电路中的噪声量。
加密协议,例如TLS(传输层安全性),是计算机安全性的骨干,用于保护Internet,云和许多其他应用程序。非常引人注目的是,这些协议的部署取决于少数开源库,这些库是由一小部分杰出开发人员开发的。这些开发人员具有一套独特的技能,这些技能是为(通常是复杂的)加密例程编写高效,正确和安全的实现所需的;特别是,它们结合了密码学和计算机架构的出色知识以及对低级编程的深刻了解。不幸的是,尽管有开发人员的技能和经验,但在主要的开源密码库中经常发现新的,有时是深远的漏洞和攻击。一类漏洞是定时攻击,它让攻击者检索诸如加密密钥之类的秘密材料,“通过仔细测量执行私人密钥操作所需的时间”。尽管Kocher在1996年首次描述了时间攻击[KO96],但他们仍在困扰着密码图库的实施。
第 2 节 调查结果;国会的看法 (a) 调查结果——国会发现: (1) 密码学对于美国国家安全和美国经济运转至关重要。 (2) 当今最广泛使用的加密协议依靠传统计算机的计算极限来提供网络安全。 (3) 量子计算机有朝一日可能有能力突破计算界限,让我们能够解决迄今为止一直难以解决的问题,比如对加密很重要的整数分解。 (4) 量子计算的快速发展表明,美国的对手有可能使用传统计算机窃取敏感的加密数据,并等到足够强大的量子系统出现来解密。 (b) 国会的看法——国会的看法是: (1) 需要制定一项联邦政府信息技术向后量子密码学迁移的战略; (2)政府和行业对后量子密码学的方法应该优先开发应用程序、硬件知识产权和可以轻松更新以支持加密灵活性的软件。
许多组织将向后量子密码 (PQC) 的迁移视为影响整个组织更广泛的 IT 安全现代化的机会,尤其是与管理加密算法、库和协议的整个生命周期有关。本演讲介绍了加密物料清单 (CBOM) 的概念,它通常被认为是这项 IT 现代化工作的关键要素。我们将 CBOM 与更熟悉的软件物料清单 (SBOM) 进行比较和对比,特别关注加密生态系统与整个软件相比如何带来独特的挑战。例如,许多加密协议都包括通过网络进行的协商阶段,这使得确切了解在任何给定的协议握手中使用了哪种算法变得复杂。我们探讨了 CBOM 可以为组织提供和不能提供的加密保证类型。最后,我们描述了如何需要密钥管理、实时加密监控和执行历史查询的能力等补充工作来填补 CBOM 的运营空白。
量子世界违反直觉。其公理之一,即海森伯格的不确定性原则,指出任何试图测量量子对象的位置或动量的尝试都会改变对象本身。从历史上看,这一原理被试图检查量子颗粒的科学家认为是一种障碍。但是,长期以来,具有相同的量子效应是密码学和情报群落长期以来感兴趣的。在理论上,量子加密的信息在未经检测的情况下无法截获,因为任何试图测量构成量子加密消息的粒子都会改变其量子特征,从而提醒漏洞的预期发件人和接收者。此外,量子加密的信号不能被强大的未来(也许是量子)计算机解码,因为对于现在广泛用于银行,互联网和国家安全域中的安全交易的RSA加密协议所担心的那样。由于这些原因,量子加密被视为发送和接收私人密码键的有前途的替代方法。