密码学的核心组成部分之一是密钥的使用。密钥是算法中用于加密和解密消息的信息。密钥必须在发送者和接收者之间保密,以确保只有授权方才能阅读消息。密码系统主要有两种类型:对称和非对称。对称密码学使用相同的密钥进行加密和解密,而非对称密码学(也称为公钥密码学)使用一对密钥 - 一个公钥和一个私钥。公钥用于加密数据,私钥用于解密数据。
摘要:由于技术的快速进步,21世纪经历了信息激增,这使知识变得更加重要的战略资产。由于缺乏通过通信网络传输和收到的信息安全性,黑客可以用他们的所有力量和智能窃取信息。因此,信息字段安全的任务变得越来越重要。不幸的是,当前的经典加密方法已经以各种方式容易受到攻击。因此,我们必须在介绍者黑客技术的存在下改善沟通的现有过程和学习功能以保护数据。密码学是电信和计算机安全基础架构的最重要部分。使用隐肌和加密技术来进行数据安全性,正在获得普及并广泛采用。已经对基于DNA的数据加密技术进行了大量研究。基于DNA的加密方法是密码学领域的一种创新范式,通过将原始文本转换为不可理解的格式来保护传输过程中的数据。这项工作提出了一种新型的加密方法,将修饰的DNA序列与山丘密码整合在一起。建议的方法包括四个阶段:在第一阶段,山丘密码算法将纯文本编码为n位二进制值。随后,在结果上执行XOR操作,然后在XOR输出中添加32位键值。第三,修饰的DNA密码学用于产生不确定性并促进隐肌。使用最终阶段的解密过程用于检索接收者方面的原始消息。建议的方法满足了安全要求,并显示了应对几个安全威胁的能力。此外,与当前系统相比,建议的卓越数据安全性的建议方法。建议的技术可以隐藏数字数据并确保关键信息的安全传输。
Purbanchal大学科学技术学院(PUSAT)副教授,尼泊尔比拉特纳加尔摘要,因为云计算完全改变了公司存储和处理数据的方式,数据安全性变得越来越重要。当我们在云中使用标准加密方法(与此设置的唯一限制都无法正常工作时,我们通常会出现数据泄露和更多脆弱性点。同构加密(HE),它使我们可以在不显示数据本身的情况下对加密数据进行计算,这是一个改变游戏规则的选项。本文讨论了同态加密的操作及其增强云安全性,数据保护和信任的潜力。由于云数据安全性有限,有几种趋势可能会在将来增强同构加密的安全性。现实生活中的案例研究和应用在本文中用于展示和讨论这种尖端的加密方法如何在现实世界中起作用。云数据安全的未来将受到异态加密的显着影响。
摘要 - 在当今快速发展的技术环境中,确保机密性至关重要。密码学是保护信息免于未经授权访问的关键学科。它采用各种加密算法来有效地保护数据。随着数字威胁的发展,对应对传统网络攻击的非常规加密方法的需求不断增长。本文介绍了利用特殊图形和公共密钥加密技术的创新加密算法,通过模块化算术属性增强安全性,并实现更强大的通信保障。分区v 1,v 2,。。。,VERTEX集V的V K称为G的色度分区。G的最小序列G的最小序列称为色数χ(G)。如果| V 1 | =β0和| V I | =β0(v - ∪i j = 1 v j)。G的最小有序色分区的顺序称为有序的色数χ1(G)。χ1(g)≥χ(g)是立即的。在本文中,我们将Nordhaus gaddum结果扩展到有序的色数。
※可以通过使用量子系统同时在两个或多个状态中存在量子系统的可能性,可以通过0、1或0和1的组合来编码量子系统,并且可以使用入口使用该入口来掌握连接的Cubit的信息和并行组成。
本提出的论文显示了数据安全技术的综述研究,这些研究可以应用于通过任何云平台传输时,可以应用于通信。数据安全的关键方面是在发件人和接收器端之间提供端到端加密。有多种技术或算法可用于提供端到端的加密。,但是这项研究主要集中在加密技术上,这些技术也可以应用于我们的数据,以维持其对云存储平台的机密性。最近,由于目睹云计算是存储,处理和检索数据的最动态的方式,这种范式的这种惊人的转变是不可避免的。云计算具有不同的优势,包括最终的灵活性,可扩展性以及个人访问组织的能力。在上行方面,用户可以选择为方便起见牺牲的隐私,而各个个人之间的差异。另一方面,您的数据有一个安全漏洞。云计算平台安全性构成了真正的挑战,因为这样的平台可以暴露于包括密码盗窃和恶意行为的许多安全问题。传统良好的安全工具,包括防火墙和访问控制,可能无法保证数据安全性,因为数据可以通过网络传输到远程服务器上。在密码学中,发件人通过云等任何传输介质发送信息。但信息不会以其实际形式传播。[1-7]除了加密外,最近已经成为E2EE中非常流行的数据安全手段的加密外,不能被忽略为可以增强云中数据安全性的另一种重要策略。但是,我们必须强调,E2EE的功能是,从数据的存在开始(从生成数据生成的那一刻开始),直到数据到达其最终目的地的最终目标 - 第三方无法在其生命周期的任何阶段浏览此数据。信息将使用一些键和加密算法转换为加密文本,并且不采用正常可读格式。因此,数据泄露的机会很少。在技术术语中,我们称此加密的文本密码文本。然后,接收器收到密码文本,然后将其解密到其实际信息形式,即仅在授权人员之间的私人钥匙。因此,密码学有助于维持我们数据的机密性。密码学的框图如图1所示,该图表明,加密通信发生在带有加密文本的网络之间的发件人和接收器之间。
敏感数据越来越多地用于在线通信中。因此,互联网消费者最关心的是数据安全。最好的行动方案是利用一种加密技术来加密数据,通过Internet翻译数据,然后将其解密到原始数据。安全传输数据的过程是密码学领域的重点。目的是防止窃听者理解消息,同时使预期的接收者能够正确接收消息。使用称为密码学的方法的集合用于混乱或隐藏数据,因此只有技术恢复的人才能以其原始格式访问它。密码学为现代计算机系统提供了坚固且具有成本效益的基础,可维持数据保密和确认数据侮辱。尽管我们的传统加密技术(例如RSA签名和AES加密)在具有可观量的RAM和计算能力的计算机上很好地发挥了功能,但它们并不适合嵌入式系统和传感器网络的领域。因此,提出了轻巧的加密技术来解决传统密码学的许多问题。这项工作开发了一种新的混合方法的纯文本加密方法,目的是增加古典加密领域的知识体体。为了额外的保护,该密码系统在密码中采用了三个不同的数值和字母键。超级密码是新提出的密码的名称。
随着量子计算领域的发展,传统加密方法(用于保护大量敏感数据)的破坏已成为迫在眉睫的威胁,而主要基于数学复杂性的传统加密技术可能不再适用于量子霸权时代。这项研究系统地分析了当前加密标准在先进量子计算能力面前的脆弱性,特别关注 RSA 和 AES 等广泛使用的加密协议,这些协议是现代网络安全的基础。该研究采用 SmartPLS 方法,模拟了量子计算能力与现有加密技术稳健性之间的相互作用,包括模拟对样本加密算法的量子攻击以评估其量子抗性。研究结果表明,量子计算有能力在未来几十年内显著破坏传统加密方法,其中 RSA 加密显示出相当大的脆弱性,而 AES 需要更大的密钥大小才能保持安全性。本研究强调了开发抗量子加密技术的紧迫性,这对于保障未来数字通信和数据完整性至关重要,并提倡密码研究和实践的范式转变,强调“抗量子”算法的必要性。它还有助于制定量子时代的网络安全战略规划,并使用 SmartPLS 提供方法框架,以进一步探索新兴技术对现有安全协议的影响。
摘要 - 在当今的数字世界中,敏感数据经常面临被未经授权的人员读取的危险,因此文件的安全存储至关重要。混合加密技术结合了多种加密方法的优势,是解决此问题的方法之一。在混合加密技术中,原始对称密钥使用不同的对称密钥进行加密,而实际数据也使用不同的对称密钥进行加密。这使得数据能够快速有效地加密和解密,同时还增加了多种加密方法的额外保护,以进行身份验证。组织机构可以利用混合加密技术来保证其关键数据的安全存储,防止非法访问和任何数据泄露。