考克斯 凯文·迈克尔·洛夫奎斯特 杰弗里·安德鲁·克鲁姆 塞思·艾伦·洛佩兹 萨尼亚·辛西娅·克鲁泽格斯 阿利安·卢伦 杰里米·J·戴维斯 特雷文·特雷梅因 马文·扎卡里 马修·迪·尼古拉斯 爱德华·麦克布莱德 格雷戈里·迪恩·德威特 塞缪尔 吉恩·麦克尔罗伊 威廉·罗伯特·多明格斯 胡安·维森特·JR·米金斯 凯尔·沃德·菲舍尔 鲁本·亨利·米卡 克雷格·A·福尔 布兰登·迈克尔·米洛斯·尼古拉斯 詹姆斯·弗雷德里克 扎克瑞·弗雷明·米切尔 马库斯·布雷登·弗莱 约瑟夫·H·莫林维尔 卡尔·兰迪·加尔文 约翰·迈克尔·穆特里 史蒂文·托马斯·加西亚 佩德罗阮·汤米·特里·古德诺夫·林恩·弗朗西斯·诺尔盖斯·塞缪尔·拉维尔·奥尼尔·大卫·帕特里克·帕明图安·卡洛·E
摘要 - 这项工作介绍了多模式扩散变压器(MDT),这是一种新颖的扩散策略框架,它擅长从多模式目标规范中学习多功能行为,而语言注释很少。MDT利用基于扩散的多模式变压器主链和两个自我监督的辅助目标来掌握基于多模式目标的长马操纵任务。绝大多数模仿学习方法仅从个人目标方式中学习,例如语言或目标图像。但是,现有的大规模模仿学习数据集仅以语言注释为部分标记,这禁止当前的方法从这些数据集中学习语言条件行为。MDT通过引入潜在的目标状态表示来解决这一挑战,该状态表示同时接受多模式目标指令进行培训。此状态表示将基于图像和语言的目标嵌入对齐,并编码足够的信息以预测未来状态。该表示是通过两个自制的辅助目标来训练的,从而增强了提出的变压器主链的性能。MDT在具有挑战性的Calvin和Libero基准提供的164项任务上显示出出色的表现,其中包括包含不到2%语言注释的Libero版本。此外,MDT还建立了关于加尔文操纵挑战的新记录,证明了对先前最新的最新方法的绝对性能提高了15%,该方法需要大规模预处理并包含10倍更多可学习的参数。MDT显示了其在模拟和现实世界环境中稀疏注释的数据中求解长马的能力。演示和代码可在https://intuitive-robots.github.io/mdt policy/。
经济、经济观点、分析、讨论和干预等在当代社会中发挥着至关重要的作用。许多基督教神学家认为这是一个令人遗憾的事实。对他们来说,特别是在过去的几十年里,经济及其被视为必然的结果已经成为社会解体、人类工具化、剥削工人、削减社会和文化部门福利等的代名词。显然,以经济论据的名义,人们容忍甚至积极鼓励贫困的增加和对穷人的忽视。例如,美国/英国的撒切尔/里根自由化改革,以及影响发展援助、国际货币关系等的所谓“华盛顿共识”,都被认为是由“经济”驱动的,与基督教价值观大相径庭。从历史角度看,基督教传统对于当代经济概念的发展、经济发展、作为其学术主题的经济学,以及神学家、哲学家、社会科学家等对它的批判都至关重要。因此,经济与批判之间的二元论也与跨文化和国际差异大体相对应。更确切地说,具有自由主义、功利主义和个人主义倾向的盎格鲁-撒克逊传统代表了经济理论和政策的最重要驱动力,而中欧和南欧的知识分子和政治传统则反对它们,呼吁不同的取向。如果我们从信仰层面来分析——在这方面追随重要的宗教思想家马克斯·韦伯——主要是新教改革派和加尔文派团体提倡前者,而许多天主教和保守派路德教思想领袖则形成了保守的反对派。这种对抗往往表明概念上的缺陷和对概念的误解。因此,为了使讨论合理化,似乎有必要对“经济”的多面历史进行更详细、更仔细的重构。在下一章中,我们将展示不同的社会经济生产体制如何与“经济”的不同理论概念相呼应。
联合国主要的气候评估本周将在中国前进,没有美国,唐纳德·特朗普(Donald Trump)总统阻止了美国官员的参与并关闭了为下一次国际气候评估提供技术支持的团队。有报道称,特朗普的行政管理已禁止NASA首席科学家凯瑟琳·卡尔文(Katherine Calvin)参加2月24日在中国杭州举行的政府间气候变化小组(IPCC)的计划会议。自然现在已经有几个消息来源确认,美国国务院代表团没有参加会议,该会议定于采用小组第七次气候评估的大纲,该会议于2029年底完成。政府使用IPCC评估是气候变化的速度和影响的金标准指南,用于塑造其气候政策。NASA还取消了一项合同,该合同资助了包括科学家和Others在内的团队为气候评估工作提供行政和技术支持,他熟悉这种情况,但要求不透露姓名,因为他们无权向新闻发布。团队本来可以支持加尔文及其联合主席,班吉(Bangi)马来西亚Kebangsaan大学的地质学家Joy Jacqueline Pereira。取消是由Washington Post报告的,并由自然界独立确认。NASA发言人说,此举是由“消除非必需咨询合同”的指导提示的。目前,该过程正在向前发展。在华盛顿特区的中国政策研究所中心枢纽主任李舒说,美国代表团的缺席“显然是国际社区的损失”。“美国在IPCC流程中起着重要作用,贡献了财务和智力支持。” IPCC发言人Andrej Mahecic拒绝发表评论,只是说该组织尚未收到有关技术支持团队状况变化的任何决定的正式通知。
多模式大语模型(MLLM)具有复杂的语言和视觉数据表现出了显着的理解和推理能力。这些进步刺激了建立通才的机器人MLLM熟练理解复杂人类指示并完成各种体现任务的愿景。然而,由于机器人平台上可用的计算和内存能力通常有限,为现实世界机器人开发MLLM是具有挑战性的。相比之下,MLLM的推断涉及存储数十亿个Pa-Rameters并执行巨大的计算,并施加了巨大的硬件需求。在我们的论文中,我们试图通过利用有趣的观察来应对这一挑战:相对容易的情况构成了控制机器人以完成各种任务的大部分程序,并且通常需要更小的模型才能获得正确的机器人动作。以这种观察的启发,我们提出了一个d ynally e xit框架,用于r obotot v ision-l an an an an an an an an an an an an a an an an a an an a an a an an a ction模型(deer-vla或Simpple Deer),该模型会根据每个情况自动调整激活的MLLM的大小。该方法利用了MLLM中的多exit档案,该方法一旦在特定情况下激活了模型的适当大小,该模型就可以终止处理,从而避免了进一步的冗余计算。此外,我们开发了建立鹿的早期终止标准的新型算法,以预定义的要求(例如,计算成本)(即,功耗)以及峰值计算消耗(即,延迟)和GPU内存使用量。这些增强功能确保鹿在不同的资源限制下有效运行,同时保持竞争性能。此外,我们设计了一种量身定制的培训方法,用于在此类多EXIT体系结构之上集成时间信息,以合理地进行预先操作。在加尔文机器人操纵基准上,鹿表明,LLM的计算成本显着降低了5.2-6.5倍,而LLM的GPU记忆则在2-6倍中,而不会损害性能。代码和检查点可在https://github.com/yueyang130/deer-vla上找到。
1。电子和离子显微镜和微分析:原理和术语,Lawrence E. Murr 2。声音信号处理:理论和实施,由Norman J. Berg和John N. Lee 3。电孔和声学扫描和偏转,米尔顿·戈特利布,克莱夫·L·爱尔兰和约翰·马丁·莱伊4。单态光纤:原理和应用,Luc B. Jeun – Homme 5。光纤数据通信的脉冲代码格式:基本原理和应用,David J. Morris 6。光学材料:选择和应用简介,Sol-Omon Musikant 7。气态测量的红外方法:理论与实践,由Joda Wormhoudt编辑8。激光束扫描:光学 - 机械设备,系统和数据存储光学器件,由Gerald F. Marshall编辑9.光学 - 机械系统设计,Paul R. Yoder,Jr。10。光纤拼接和连接器:理论与方法,加尔文·M·米勒(Calvin M. Miller白色11。激光光谱及其应用,由Leon J. Rad – Ziemski,Richard W. Solan和Jeffrey A. Paisner编辑,12。红外光电学:设备和应用,William Nunley和J. Scott Bechtel 13。集成的光电电路和组件:设计和应用,由Lynn D. Hutcheson编辑14。分子激光器手册,由彼得·K·C·乔(Peter K. Cheo)编辑15。光纤和电缆的手册,Hiroshi Murata 16。Acousto – Optics,Adrian Korpel 17。应用光学的程序,John Strong 18。固体激光器手册,由Peter K. Cheo 19.光学计算:数字和象征性,由Raymond Arra -Thoon20。D. K. Evans 21。激光诱导的等离子体和应用,由Leon J. Rad – Ziemski和David A. Cremers编辑22。红外技术基础知识,Irving J. Spiro和Monroe Schlessinger 23。单码光纤光学器件:第二版原理和应用程序,修订和扩展,Luc B. Jeunhomme 24。图像分析应用,由Rangachar Kasturi和Mohan M. Trivedi编辑25。光电导率:艺术,科学和技术,N。V。Joshi 26。光电工程的原理,马克·A·梅特泽(Mark A. Mentzer)27。镜头设计,米尔顿·莱金(Milton Laikin)28。光学组件,系统和测量技术,Rajpal S. Sirohi和M. P. Kothiyal 29。电子和离子显微镜和微分析:原理和副本,第二版,修订和扩展,劳伦斯E. Murr
考试费率名称 命令 简称 AD1 BROWN TIMOTHY J VR 57 SAN DIEGO CA AD1 BRUNEY ALTON LI VR 55 POINT MUGU CA AD1 DURAN JOHN RY B HSC THREE DET SCORE CA AD1 FARMER NICHOLAS VR-53 JOINT BASE ANDREWS MARYLAND AD1 MOVILLA ARNJEFF PATRON SIX NINE AD1 SNOW DONALD THO VR 62 JACKSONVILLE FL AD2 AYALA MATTHEW D FRC ASD JOINT BASE MDL FT DIX NJ AD2 CORREASANCHEZ C VR 57 SAN DIEGO CA AD2 HILKER WILLIAM VR 64 MCGUIRE AFB NJ AD2 KUE NICHOLAS CH HELSEACOMBATRON EIGHT FIVE AD2 LAPORTE JILLIAN VFC 12 VIRGINIA BEACH VA AD2 MOSER PHILIP RY VR 64 麦圭尔空军基地 NJ AD2 OLIVARESCABRERA HELMINERON FIFTEEN AD2 PETTIFORD TYRON HELMINERON FIFTEEN AD2 RODRIGUEZ JESUS HSC 三 DET 得分 CA AD2 SCHWARTZMEACHAM FRC ASD 联合基地 MDL FT DIX NJ AD2 SKANES ZHANE VR 55 POINT MUGU CA AD3 AROS DEVEN JOSE VR 64 麦圭尔空军基地 NJ AD3 BEGAY TALMADGE HSC 三 DET 得分 CA AD3 CABIGAO THOMASV HSC 三 DET 得分 CA AD3 CHAVIRA ADRIAN VFA 125 FRS DET LEMOORE CA AD3 CORREA ALEXANDE CENNAVAVNTECHTRAU 杰克逊维尔 FL AD3 DEPENBROCK EMME NATTC彭萨科拉 FL AD3 迪森索·道格拉斯·赫尔米隆 15 AD3 爱德华兹·范·埃里 VR 64 麦奎尔空军基地 NJ AD3 赫夫·普雷斯顿 MI VFC 12 弗吉尼亚海滩 弗吉尼亚州 AD3 杰克逊·凯雷 J VR 64 麦奎尔 AFB 新泽西 AD3 米德·拉尼卡·安赫尔米隆 15 AD3 普里维特斯蒂芬巡逻队六二 杰克逊维尔 FL AD3 鲁达·迈克尔 A VFC 12 弗吉尼亚海滩 VA AD3 托雷斯 ISSAC JE NAS JRB 沃斯堡 TX AE1 巴内特乔丹 VR 59 沃斯堡 TX AE1 卡罗尔乔纳莎 纳夫雷斯森 文图拉县 CA AE1 KO PHYO KO HSC 三德得分 CA AE1 兰格尔·米格尔·赫尔米伦 15 AE1 汤普森·威利亚 VR 58 佛罗里达州杰克逊维尔 AE1 WALKER JACOB ED VR 57 圣地亚哥 CA AE1 华莱士·杰弗里 VR 56 弗吉尼亚海滩 VA AE2 阿尔瓦拉多·克利福 VR 55 POINT MUGU CA AE2 安布勒·卢卡斯T VR 54 新奥尔良 LA AE2 BELLO JAVIER HO VR 58 佛罗里达州杰克逊维尔 AE2 CAVICCHIA JOSEP HELMINERON 15 AE2 COMBS COLIN REE VFA 125 FRS DET LEMOORE CA AE2 FOSTERDEAN ALLA VR 55 POINT MUGU CA AE2 FREED JULIUS DO HELMINERON 15 AE2加尔文·彼得·何HELMINERON 十五