摘要:外延和晶圆键合系统界面的研究借鉴了材料科学、电气工程和机械工程,涉及先进的材料表征技术。低温晶圆键合已被用来生产各种各样的材料组合,最显著的是绝缘体上硅结构。然而,对外延和键合界面的修改会影响这些界面上的电或热传输。在本演讲中,我们提供了几个半导体和金属基系统的例子,以解决研究和修改不同、技术上重要的界面组合作为处理(如退火)的功能的能力。材料组合范围从 Si|Si 和 Si|Ge 到宽带隙材料组合,包括 GaN|Si 到 b-Ga 2 O 3 | SiC 以及金属|金属热压键合。我们的主要目标是能够研究和设计界面以优化属性并最终优化设备性能。这些研究是 MURI 项目“利用新的理论范式增强宽带隙电力电子中的界面热传输”的一部分。
随着新生量子处理单元中量子比特数量的增加,第一代实验中使用连接式 RF(射频)模拟电路变得极其复杂。物理尺寸、成本和电气故障率都成为控制系统可扩展性的限制因素。我们开发了一系列紧凑型 RF 混频板来应对这一挑战,通过在具有 EMI(电磁干扰)屏蔽的 40 mm × 80 mm 4 层 PCB(印刷电路板)上集成 I/Q 正交混频、IF(中频)/LO(本振)/RF 功率电平调整和 DC(直流)偏置微调。RF 混频模块设计用于 2.5 至 8.5 GHz 之间的 RF 和 LO 频率。测得的典型镜像抑制和相邻信道隔离分别为 ∼ 27 dBc 和 ∼ 50 dB。通过在环回测试中扫描驱动相位,模块短期幅度和相位线性度通常测量为 5 × 10 − 4 (V pp /V mean ) 和 1 × 10 − 3 弧度 (pk-pk)。通过将 RF 混合板集成到超导量子处理器的室温控制系统中并执行单量子比特门和双量子比特门的随机基准测试表征,验证了 RF 混合板的运行。我们测量了单量子比特过程不保真度为 9 . 3 ( 3 ) × 10 − 4 和双量子比特过程不保真度为 2 . 7 ( 1 ) × 10 − 2 。
生长素诱导降解 (AID) 系统已成为一种强大的工具,可有条件地消耗多种生物体和细胞类型的蛋白质。在这里,我们描述了一种工具包,用于增强秀丽隐杆线虫中 AID 系统的使用。我们已经生成了一组单拷贝、组织特异性(生殖系、肠道、神经元、肌肉、咽喉、皮下组织、接缝细胞、锚细胞)和全体细胞 TIR1 表达菌株,这些菌株携带共表达的蓝色荧光报告基因,以便在实验中使用红色和绿色通道。这些转基因被插入常用的、特征明确的基因座中。我们证实,我们的 TIR1 表达菌株对几种核和细胞质 AID 标记的内源性底物产生了预期的消耗表型。我们还构建了一组质粒,用于构建修复模板,以通过 CRISPR/Cas9 介导的基因组编辑生成荧光蛋白::AID 融合。这些质粒与秀丽隐杆线虫群体中常用的基因组编辑方法(Gibson 或 SapTrap 组装质粒修复模板或 PCR 衍生的线性修复模板)兼容。这些试剂将共同补充现有的 TIR1 菌株,并促进快速和高通量的基因荧光蛋白::AID 标记。这组新的 TIR1 表达菌株和模块化、高效的克隆载体可作为直接组装 CRISPR/Cas9 修复模板的平台,用于条件性蛋白质消耗。
大脑奖励回路的一个显著特点是它在各种刺激中都具有共性。例如,所有成瘾行为(例如,尽管有不良后果,仍强迫性地重复的行为)都会增加大脑中一小部分区域(称为伏隔核)的多巴胺。我们的大脑奖励系统参与的条件种类繁多,但共同的主题是满足我们生存和繁殖的进化要求。明显的触发因素包括对食物、性、睡眠、冷热平衡和安全的渴望。然而,我们也是一个严重依赖社会关系生存的物种。在生命早期,我们依靠群体成员来调节我们的基本生理机能(即稳态)。14 在青少年时期,社会关系对我们的生存至关重要。15
人类可以从先前的经验中汲取洞察力,以快速适应具有共同底层结构的新环境。在这里,我们结合功能成像和计算建模来识别支持发现和转移分层任务结构的神经系统。人类受试者(男性和女性)完成了强化学习任务的多个部分,该任务包含控制刺激 - 反应动作映射的全局分层结构。首先,行为和计算证据表明人类成功地发现并转移了嵌入在任务中的分层规则结构。接下来,对 fMRI BOLD 数据的分析揭示了整个额顶叶网络的活动,该活动与发现这种嵌入结构特别相关。最后,整个扣带回-岛叶网络的活动支持这种发现结构的转移和实施。总之,这些结果揭示了一种分工,其中可分离的神经系统支持抽象控制结构的学习和转移。
摘要:近年来,人们对选择性激光熔化 (SLM) / 选择性激光烧结 (SLS) / 直接金属沉积 (DMD) 技术进行了一般性研究,也对该领域的详细问题进行了研究。然而,在上述技术中,对单轨特征的研究存在研究空白。基于 2016-2019 年发布的数据,采用一种方法对知识库以及新技术发展趋势进行了初步的定量分析。这项研究证明了基于贝叶斯算法的数据挖掘技术在分析增材制造过程趋势方面的有效性,以及使用贝叶斯算法获得的知识的实际应用。在完成上述分析之后,在不同加工条件下分析了基于镍基合金和 Fe-Al 青铜的复合材料的单层和双层。描述了激光光斑速度和间距对显微硬度、微观结构和中间层特征的影响。因此,创新方法,即将研究现象的科学数据库分析与随后的实验特征研究相结合,是本研究的科学新颖之处。
Naghibi, S.、Kargar, F.、Wright, D.、Huang, CYT、Mohammadzadeh, A.、Barani, Z.、Salgado, R. 和 Balandin, AA 用于先进电子产品的非固化石墨烯导热界面材料。先进电子材料 1901303 (2020)。doi:10.1002/aelm.201901303 Naghibi, S.;Kargar, F.;Barani, Z.;Salgado, R.;Wright, D.;Balandin, AA “具有高石墨烯负载的非固化导热界面材料”,材料研究学会 2019 年春季会议口头报告;亚利桑那州凤凰城;2019 年 4 月 25 日。
1 杜克大学医学院精神病学和行为科学系,200 Trent Drive, Box 3620 DUMC,达勒姆,北卡罗来纳州 27710,美国;courtney.crowell@duke.edu (CAC);moritz.dannhauer@duke.edu (MD);wesley.lim@duke.edu (WL);hannah.l.palmer@duke.edu (HP);susan.hilbig@duke.edu (SAH);alexb2323@gmail.com (AB);connor.hile@duke.edu (CH);sarah.lisanby@nih.gov (SHL);angel.peterchev@duke.edu (AVP);greg@duke.edu (LGA) 2 杜克大学医学院神经病学系,3116 N Duke Street,达勒姆,北卡罗来纳州 27704,美国; simon.davis@duke.edu 3 杜克大学认知神经科学中心,308 Research Drive,达勒姆,北卡罗来纳州 27710,美国;cabeza@duke.edu 4 国家心理健康研究所,6001 Executive Boulevard,贝塞斯达,马里兰州 20852,美国; bruce.luber@nih.gov 5 杜克大学生物医学工程系,305 Teer Engineering Building, Box 90271, Durham, NC 27708, USA 6 杜克大学电气与计算机工程系,305 Teer Engineering Building, Box 90271, Durham, NC 27708, USA 7 杜克大学医学院神经外科系,200 Trent Drive, Box 3807 DUMC, Durham, NC 27710, USA 8 杜克大学心理学与神经科学系,417 Chapel Drive, Durham, NC 27708, USA * 通讯地址:Lysianne.beynel@duke.edu;电话:+ 1-919-613-5094