尽管本文包含的所有声明和信息均准确可靠,但我们不提供任何明示或暗示的保证或担保。本文提供的信息并不免除用户自行进行测试和实验的责任,用户应承担使用该信息和获得的结果所产生的所有风险和责任。关于材料和工艺使用的声明或建议不代表或保证此类使用不侵犯专利,也不构成侵犯任何专利的建议。用户不应认为本文已列出所有毒性数据和安全措施,或可能不需要其他措施。PB0191011Rev11 ©2011 Honeywell International Inc.
SSC 2010 财年项目建议:制定确定船体残余应力的通用设计指南 提交人:Sreekanta (Sree) Das,加拿大温莎大学。1.0 目标。1.1 船体是船舶的主要结构部件,通常由加强钢板制成。钢板通过焊接加强筋来加强。焊接过程会产生残余应力,这会导致裂纹萌生和裂纹扩展的潜在问题。已完成一些研究,以确定由带有一个或两个加强筋的钢板组成的船体部件中残余应力纵向分量的分布。然而,需要进行详细的研究以制定全面的设计指南,供船舶制造商、航运业和结构工程师用来确定残余应力所有三个法向分量的真实分布。因此,拟议项目旨在开展一项详细研究,以制定一般准则,帮助确定船体所有位置和三个方向的残余应力的所有三个分量。这项研究还将考虑焊接过程中的停止和启动以及加强筋的突然终止的影响。最先进的中子衍射 (ND) 方法将用于实验研究中残余应变的精确测量。非线性有限元 (FE) 建模将用于详细的参数研究。2.0 背景。2.1 船体结构由钢板制成,钢板由钢梁和大梁加固。结构部件(梁、大梁、板)通过焊接连接。焊接过程会在板材中产生大量热量输入,因此,当加固板冷却时会产生局部残余应力。船舶承受连续的循环载荷,因此疲劳失效和疲劳寿命是船舶结构的主要设计考虑因素之一。由于应力集中和残余应力的存在,大多数疲劳裂纹和随后的疲劳失效都始于两个结构部件之间的连接处。已经完成了大量研究工作,以确定考虑残余应力影响的船体结构疲劳寿命。在这些研究中,假设残余应力的纵向分量具有理想化且非常简单的分布,尽管人们知道残余应力分布取决于几个因素,包括 (i) 焊接过程中产生的热输入水平、(ii) 母钢板的厚度和 (iii) 加强筋的间距。最近完成的项目 SR-1456 考虑了热输入水平
摘要:结构设计必须确保其在整个使用寿命期间的安全性。为确保这一点,设计师首先应了解结构在材料、截面和载荷条件下的表现。在现代飞机结构设计中,通过考虑选择性设计特性(尤其是进行分析),可以实现高精度设计以获得最高的结构效率。加强筋、纵梁或桁条是用作机身和机翼支撑构件的薄金属条。当我们考虑飞机蒙皮对施加在其上的载荷的抵抗力时,由于脆弱性,飞机蒙皮很容易变形。为了解决这个问题,我们设计了一种可以承受挠度和应力水平的加固面板。通过改变加固面板截面和蒙皮材料,飞机蒙皮可以承受变形。在当前的研究中,考虑了运输机的代表性加固面板进行评估。将使用不同材料类型的加强筋的不同横截面对加固面板进行结构分析。随着材料的变化,通过不同的横截面确定 Von-misses 应力和变形,以确定更有利于提高飞机结构强度的截面。研究包括材料特性以承受
1.图 2-1:板-加强筋和 HAZ 的材料曲线 (Rigo et al.2003) ..........................8 2.图 3-1:6061 和 5083 材料中的应力-应变曲线比较.............................................13 3.图 6-1:AL5083 和 AL 6082 的应力-应变关系.............................................49 4.图 6-2:板和加强筋的热影响区 (HAZ) (Paik 2005) .............................50 5.图 6-3:加强板的有限元模型.........................................................................51 6.图 6-4:带HAZ ................................................................................51 7.图 6-5:带 HAZ 的挤压板有限元模型 ..............................................................52 8.图 6-6:应用于有限元模型的边界条件 ................................................................52 9.图 7-1:极限强度比较(FEA 结果) .............................................................................55 10.图 7-2:极限强度比较:综合性能与降低的母材性能 .............................................................................................................61 11.图 7-3:模型 11 的极限强度比较:综合性能与增加的 HAZ 性能(25% 更高的屈服强度) .............................................................................................61 12.图 7-4:强度降低与失效应力除以 HAZ 屈服强度..................62 13.图 7-5:平均失效应力下强度降低与 HAZ/基准切线模量比率.........................................................................................................................62 14.图 7-6:拉伸载荷工况屈服点比较.........................................................................................64 15.图 7-7:屈服点侧压力图.........................................................................................................68 16.图 7-8:侧压力相对于屈服点的百分比差异。组合情况 ...........................68 17.图 7-9:假设的软化区 (Paik 2005) ......................................................................................69 18.图 7-10:带软化区的板-加强筋组合横截面 (Paik 2005) .............................................................................................................................................69 19.图7-11:极限强度比较......................................................................................73
船舶结构中平面内受载加强筋的破坏将导致相邻板材同时屈曲。DMEM10(加拿大军队水面战舰结构设计)和NES 110(英国国防部海军工程标准)评估加筋板的极限强度,即通过在极限板材抗压强度曲线和柱强度曲线之间进行迭代获得极限承载能力。目前,极限板材抗压强度是根据Faulkner有效宽度方程得出的,而加强筋和板材的组合强度则通过Bleich抛物线来评估。抛物线的原始推导仅考虑了材料的非弹性,而没有考虑缺陷。Smith等人根据有限元结果推导出小缺陷、平均缺陷和大缺陷的柱强度曲线集。这些结果以数据表格式呈现在SSCP23(英国国防部水面舰艇结构设计)中。将传统程序的极限强度与 SSCP23 中的设计曲线进行比较,发现存在很大差异。采用有限元分析(包括缺陷和残余应力的影响)来研究这些差异。为了在设计程序中提供替代方案,还研究了土木结构和海上建筑标准中的一些相关规定。
严重断裂对船舶结构完整性的威胁更为严重。尽管近年来船舶结构严重断裂并未引起太多关注,但确实存在。此类断裂给船舶所有者和运营商带来了问题。例如,存在严重断裂的船舶必须进行修理,导致停运时间延长和总体运营成本增加。此外,它们造成灾难性故障的可能性不容低估,因为严重断裂通常沿垂直于船舶纵向连续结构的方向扩展,并延伸到板材、加强筋和其他重要结构构件。断裂实际上会降低船舶结构的强度和完整性,使船舶不适航。这种类型的断裂可能导致船舶结构失去水密完整性或完全失效。
船体结构正在使用屈服强度最低为 100,000 psi 的高强度低合金淬火回火钢。船舶结构委员会发起了一个项目,以确定应使用哪些机械性能作为性能标准,评估这些标准对大型测试焊件的适用性,并选择与大型测试相关的小型实验室测试。对可用的机械性能数据和各造船厂使用这些材料的调查导致建议进行某些实验室调查。本报告描述了对高强度低合金板和焊件进行的小规模和大规模测试的结果。这些测试表明,8 英寸长的缺陷可以在低于材料屈服强度的应力下引发快速断裂,结构抗断裂性可以通过加强筋来提高,并且焊件的抗断裂性可以等于基板的抗断裂性。
1. 简介 20 世纪 50 和 60 年代,美国研制了载人运载火箭,将美国国家航空航天局的宇航员送上月球,从而实现了肯尼迪总统在 20 世纪 60 年代末让美国人登上月球的承诺。在过去 50 年里,美国主导的载人航天事业尽管出现了创新的制造方法,但运载火箭核心结构的设计和制造几乎没有什么改变。现有的金属运载火箭结构制造技术,如推进剂箱、级间和适配器,包括与阿波罗时代同义的多件焊接和/或铆接施工方法。生产通常涉及使用厚板起始原料,将其加工成包含皮桁、正交或等网格加强筋的单体结构。当前的制造和设计选项往往会对系统架构产生负面影响。
以下比较分析将是船舶结构委员会报告参考文献 A 的比较设计研究的延伸。该报告存在错误,参考文献 B 对其进行了更正。原始研究仅涉及铝制底部和侧面结构。给出了船体中部船体梁剖面模量、LCG 和船体上其他几个点的板厚、加强筋和横框架剖面模量的要求。在本比较研究中,这些要求将扩展为在钢结构中提供相同的要求,并将选择结构构件来比较底部和侧板的重量。由于原始研究中未提供足够的信息,因此不会确定甲板尺寸,也不会确定船体梁剖面模量,以确定局部要求或船体梁要求是否决定实际剖面模量。