表格中的 edf 和置信因子按以下方式获得:N =l,OW,m = 128,M = 1025-3~128+1 = 642(估计中的加数数量),q = M/m =5.0156,= 1.225,ul = 0.589 来自'IBble I,edf = 6.9617 来自等式 (4)。对于 95% 的置信度,我们需要计算 2.5% 和 975% 的卡方水平。逆卡方算法,Y = 6.9617 和 p = 0.025,给出 2 = 1.6720 作为 25% 水平,在公式 (2) 中用 a 表示。同样,97.5% 水平为 15.928,用 b 表示。计算出的置信因子为 1 - = 03389,m- 1 = 1.0405。(请注意,表 I1 中的值是根据和 al 的值计算出来的,这些值的有效数字比表 I 中给出的值要多。)
在量子计算机上模拟汉密尔顿动力学是量子信息处理的核心。在本次演讲中,我将讨论交换和反交换在汉密尔顿模拟中的作用。在 Trotter 算法中,最坏情况的算法误差与汉密尔顿加数的嵌套交换子的谱范数有关。我们最近的工作 [PRL 129.270502] 表明,汉密尔顿模拟的平均性能与嵌套交换子的 Frobenius 范数有关。为了处理交换子中的 Trotter 误差,我们提出了使用 LCU 补偿 Trotter 误差的汉密尔顿模拟算法,该算法兼具两者的优点 [arXiv: 2212.04566]。反交换一直被视为一种障碍,它使模拟变得更加困难,并且需要额外的资源才能达到所需的模拟精度。在我们最近的工作 [Quantum 5, 534 (2021)] 中,我们发现反向交换可以在 LCU 类型的汉密尔顿模拟算法中提供优势。基于反向交换取消,我们减少了算法误差并提出了改进的截断泰勒级数算法。
摘要 - 到目前为止,行星表面探索取决于各种移动机器人平台。这些移动机器人在复杂地形中的自主导航和决策在很大程度上依赖于他们的地形感知,本地化和映射功能。在本文中,我们释放了尾巴数据集,这是行星勘探机器人可变形的颗粒环境中的新挑战性数据集,这是我们先前工作的扩展,即尾部(Terrain-Terrain-Terrain-Iake Modi-Modal)数据集。我们在海滩上进行了实地实验,这些海滩被认为是多种沙质地形的行星表面模拟环境。在尾部加数据集中,我们提供了更多带有多个循环的序列,并从白天到晚上扩展场景。从模块化设计中受益于我们的传感器套件,我们使用轮子和四倍的机器人进行数据收集。传感器包括一个3D激光雷达,三个向下的RGB-D摄像头,一对全球式彩色摄像机,可用作前瞻性立体声摄像头,RTK-GPS设备和额外的IMU。我们的数据集旨在帮助研究人员在非结构化的,可变形的颗粒状地形中开发多传感器的同时定位和映射(SLAM)算法。我们的数据集和补充材料将在https://tailrobot.github.io/上找到。
页面编程以编程一个数据字节,需要两个说明:写入启用(WREN),这是一个字节,以及一个页面程序(PP)或Quad Input Page Program(QPP)序列,由四个字节加数据组成。这是内部程序周期(持续时间t pp的)。要散布此开销,页面程序(PP)或Quad Input Page Program(QPP)指令允许一次编程(从1更改为1),只要它们位于内存的同一页面上的连续地址,就可以进行256个字节。部门擦除,半块擦除,块擦除和芯片擦除页面程序(PP)或Quad Input Page Program(QPP)指令允许重置位1到0。可以在应用此之前,需要将内存字节删除到所有1s(FFH)。可以使用扇区擦除(SE)指令一次实现这一部门,一次使用半块擦除(HBE)指令,一次使用块擦除(BE)指令或在整个内存中使用芯片擦除(CE)指令一次块。这开始了一个内部擦除周期(持续时间,t hbe,t be或t ce)。擦除指令必须先进行写入启用(WREN)指令。在写作,程序或擦除周期期间进行调查,可以通过不等待最坏的情况延迟(t w,t pp,t pp,t se,t hbe,t e或t be或t ce),可以进一步改善写作状态寄存器(WRSR),程序(PP,QPP)或擦除(SE,HBE,BE或CE)的进一步改善。当芯片选择(CS#)较低时,启用设备并处于主动功率模式时,主动功率,备用功率和深度降低模式。设备的消耗量下降到I CC1。在状态寄存器中提供了正在进行的写入(WIP)位,以便该申请程序可以监视其值,并将其轮询以确定上一个写入周期,程序周期或擦除周期完成何时完成。当Chip Select(CS#)较高时,设备将被禁用,但可以保留在活动的功率模式下,直到所有内部周期都完成(程序,擦除和写入状态寄存器)。然后设备进入待机电源模式。执行特定指令(Enter Deep Down Mode(DP)指令)时,将输入深度降低模式。设备的消耗进一步下降到I CC2。该设备保留在此模式下,直到执行另一个特定的指令(从深度降低模式和读取设备ID(RDI)指令)为止。当设备处于深度降低模式时,所有其他说明都将忽略。这可以用作额外的软件保护机制,当设备没有主动使用时,可以保护设备免受无意的写入,程序或擦除指令。使用非易失性存储器的写保护应用程序必须考虑噪声和其他不利系统条件的可能性,这些条件可能会损害数据完整性。解决这个问题