Turner 等人的欧拉曲线变换 (ECT) 是嵌入单纯复形的完全不变量,易于进行统计分析。我们对 ECT 进行了推广,以提供同样方便的表示形式,用于加权单纯复形,例如在某些医学成像应用中自然出现的对象。我们利用 Ghrist 等人关于欧拉积分的工作来证明这个不变量——称为加权欧拉曲线变换 (WECT)——也是完整的。我们解释了如何将灰度图像中分割的感兴趣区域转换为加权单纯复形,然后转换为 WECT 表示。该 WECT 表示用于研究多形性胶质母细胞瘤脑肿瘤形状和纹理数据。我们表明,WECT 表示可根据定性形状和纹理特征有效地对肿瘤进行聚类,并且这种聚类与患者生存时间相关。
糖尿病是全球最重要的公共卫生问题之一,对全球公共卫生和社会经济发展造成了沉重的负担。尽管某些国家的发病率已经开始降低,但近几十年来,其他发达国家和发展中国家的糖尿病患病率也有所增加(1)。2型糖尿病(T2D)约占糖尿病病例的90%(2),根据世界卫生组织的说法,即使在年轻人中,被诊断为T2D的人数也在增加(2)。T2D的发展主要是由不健康的生活方式以及环境和遗传因素的相互作用引起的。尽管其中一些因素受到个人控制,例如生活方式,但其他因素却没有,例如年龄,性别和遗传学的增加。饮食也归因于T2D的风险(3,4)。在许多前瞻性研究中已经确认了这种关联(5-8)。此外,T2D是一种越来越普遍的代谢疾病,引起严重的微血管并发症,即心血管疾病(CVD),视网膜病变,神经病和肾病(3,9)。此外,据报道,减肥或生活方式改良的有益影响可以预防,延迟和减少疾病的发生率(2,10)。因此,对整体饮食模式(习惯食品和营养摄入量)的有效估计已成为研究饮食与健康状况之间关系的基本方面(8)。一般饮食习惯可以提供超出营养和单一食物作用的见解(2,11)。基于食品和食物组的RF,MDS和AMDS某些指数基于国家营养建议和国家饮食指南,这些指南评估了整体营养模式,包括健康饮食指数,替代健康饮食指数,健康饮食指标,推荐食品评分(RFS),饮食质量指数,饮食质量指数,饮食质量质量评分,地中海饮食评分(MDS)以及替代地中海饮食(MDS)和替代饮食(AMDS)。
深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。
图1:来自临床数据仓库和Correponding标签的T1W脑图像的示例。a1:质量高的图像(第1层),没有gadolinium; A2:质量高(第1层),带有Gadolinium; B1:中等质量(第2层),没有Gadolinium(噪声1级); B2:中等质量(第2层),带有Gadolinium(对比1级); C1:不良质量(第3层),没有gadolinium(对比2级,运动2级); C2:不良质量(第3层),gadolinium(对比2级,运动级1级); D1:笔直排斥(分段); D2:直接拒绝(裁剪)。
摘要:亲自识别,重新排列是通过完善检索结果的初始排名来提高整体准确性的关键步骤。先前的研究主要集中在单视图像的特征上,这些特征可能会导致偏见和诸如姿势变化,观点变化和遮挡等问题。使用多视图来介绍一个人可以帮助减少视图偏差。在这项工作中,我们提出了一种有效的重新级别方法,该方法通过使用K-Neartivt加权融合(KWF)方法来汇总邻居的功能来生成多视图特征。具体来说,我们假设从重新识别模型中提取的特征在表示相同的身份时高度相似。因此,我们以无监督的方式选择K相邻功能来生成多视图功能。此外,本研究探讨了特征聚合过程中的重量选择策略,从而使我们能够确定有效的策略。我们的重新排列方法不需要模型进行微调或额外的注释,因此它适用于大规模数据集。我们在重新识别数据集Market1501,MSMT17和遮挡的dukemtmc上评估我们的方法。结果表明,从初始排名结果中重新列出顶级M候选者时,我们的方法会显着提高列表@1并映射。具体而言,与初始结果相比,我们的重新排列方法在具有挑战性的数据集中,等级@1的提高分别为9.8% / 22.0%:MSMT17和闭塞性dukemtmc。此外,我们的方法证明了与其他重新排列方法相比,计算效率的实质性提高。
摘要 - 近年来,在所谓的可认证感知方法的发展中取得了显着进步,这些方法利用半闪烁,凸出放松,以找到对机器人技术中的感知问题的全球最佳选择。然而,其中许多放松依赖于简化促进问题制定的假设,例如各向同性测量噪声分布。在本文中,我们探讨了矩阵加权(各向异性)状态估计问题的半决赛松弛的紧密性,并揭示了其中潜伏在其中的局限性:基质加权因素会导致凸的松弛因失去紧密度。特别是我们表明,矩阵权重的本地化问题的半决赛松弛仅对于低噪声水平可能很紧。为了更好地理解这个问题,我们引入了状态估计的后验不确定性与通过凸面重新获得的证书矩阵之间的理论联系。考虑到这种联系,我们从经验上探讨了导致这种损失的因素,并证明可以使用冗余约束来恢复它。作为本文的第二项技术贡献,我们表明,当考虑矩阵重量时,不能使用标量加权大满贯的状态放松。我们提供了一种替代配方,并表明其SDP松弛并不紧密(即使对于非常低的噪声水平),除非使用特定的冗余约束。我们在模拟和现实世界数据上证明了制剂的紧密度。
基于扩散的生成模型最近在语音增强(SE)方面获得了研究,为常规监督方法提供了替代方案。这些模型将干净的语音训练样本转化为高斯噪声,通常以嘈杂的语音为中心,随后学习了一个典型的模型以扭转这一过程,从而有条件地在嘈杂的语音上。与受监督的方法不同,基于生成的SE通常仅依赖于无监督的损失,这可能会导致条件嘈杂的语音效率较低。为了解决这个问题,我们提议以ℓ2的损失来增加原始的扩散训练目标,以测量地面真相清洁语音与每个扩散时间阶段的估计之间的差异。实验结果证明了我们提出的方法的有效性。
摘要:由于全球城市化,城市地区遇到了许多环境,社会和经济挑战。已经提出和实施了不同的解决方案,例如基于自然的解决方案以及绿色和蓝色基础设施。考虑到与这些解决方案相关的外源性因素是评估其可能影响的关键问题。这项研究研究了可能的解释性因素及其演变,直到2054年对紫外线地区的几种解决方案进行了研究:废水恢复,地表地热能和区域的热量减震能力。此研究由一系列统计模型,即普通最小二乘(OLS)和地理位置加权回归(GWR)进行,这些回归(GWR)集成在地理信息系统中。主要的驱动因素被确定为土地使用/土地覆盖和人口分布。结果表明,GWR模型捕获了空间自相关的很大一部分。的预测结果,低,中和高潜力实施特定溶液的区域。此外,将解决方案的实施能力与所描述的需求进行了比较,因为需要减慢地表城市热岛的影响和对化石能量的依赖。此外,降温能力始终与人类活动有明显的联系。需要进一步研究以发现剩余的原因,尤其是空气质量,水,植被和气候变化。
“股权与股权相关的证券”包括但不限于公平,存放收据,优先股,认股权证(不超过基金资产净值的5%)和不嵌入FDI或杠杆作用的可转换证券(例如可转换的股份,股份购买权,股票购买权和股份债券,可能是固定或固定的,固定的和/或固定的,或者均无份额和覆盖率,或者是固定的,或者是固定的,或者是固定的,或者是固定的,或者是固定的。基金不得投资或有可转换证券。该股权和股权相关的证券应在索引中包含的国家(在受监管的市场列表中)中的证券交易所或受监管的市场上列出,其详细信息以下标题为“指数描述”。,如果这些国家直接进入股票市场是不可行的,则可以通过投资于其他地方列出的股票和/或股票相关证券来实现间接敞口。选择此类股票和/或股权相关的证券的主要标准是其在实现基金目标方面的投资目标方面的适用性,以与指数的风险和回报特征紧密相匹配。基金可能会不时拥有证券,这些证券因公司的行动和诸如索引变化/重新平衡/或ESG的变化之类的诸如索引和执行范围的变化的情况之后的企业行动和其他活动之类的诸如索引和/或变化的变化之类的诸如索引和执行范围的变化之类的诸如索引变化和更改之类的其他活动之类的其他活动之类的其他活动的结果,包括不符合环境,社会和治理(“ ESG”)标准,这些证券可能不符合环境,社会和治理(“ ESG”)标准。在这种情况下,该基金将在合理的时间内销售此类证券,并考虑到单位持有人的最大利益。
“股权与股权相关的证券”包括但不限于公平,存放收据,优先股,认股权证(不超过基金资产净值的5%)和不嵌入FDI或杠杆作用的可转换证券(例如可转换的股份,股份购买权,股票购买权和股份债券,可能是固定或固定的,固定的和/或固定的,或者均无份额和覆盖率,或者是固定的,或者是固定的,或者是固定的,或者是固定的,或者是固定的。该股权和股权相关的证券应在索引中包含的国家(在受监管的市场列表中)中的证券交易所或受监管的市场上列出,其详细信息以下标题为“指数描述”。,如果这些国家直接进入股票市场是不可行的,则可以通过投资于其他地方列出的股票和/或股票相关证券来实现间接敞口。选择此类股票和/或股权相关的证券的主要标准是其在实现基金目标方面的投资目标方面的适用性,以与指数的风险和回报特征紧密相匹配。基金可能会不时拥有证券,这些证券因公司的行动和诸如索引变化/重新平衡/或ESG的变化之类的诸如索引和执行范围的变化的情况之后的企业行动和其他活动之类的诸如索引和/或变化的变化之类的诸如索引和执行范围的变化之类的诸如索引变化和更改之类的其他活动之类的其他活动之类的其他活动的结果,包括不符合环境,社会和治理(“ ESG”)标准,这些证券可能不符合环境,社会和治理(“ ESG”)标准。在这种情况下,该基金将在合理的时间内销售此类证券,并考虑到单位持有人的最大利益。