图1:来自临床数据仓库和Correponding标签的T1W脑图像的示例。a1:质量高的图像(第1层),没有gadolinium; A2:质量高(第1层),带有Gadolinium; B1:中等质量(第2层),没有Gadolinium(噪声1级); B2:中等质量(第2层),带有Gadolinium(对比1级); C1:不良质量(第3层),没有gadolinium(对比2级,运动2级); C2:不良质量(第3层),gadolinium(对比2级,运动级1级); D1:笔直排斥(分段); D2:直接拒绝(裁剪)。
由于评估标准多重且相互交织,而且未经证实的新技术本身具有不确定性,因此很难评估 NASA 的先进技术项目。传统的多标准决策模型往往忽略了评估过程中的相互依赖性和不确定性。我们提出了一种模糊加权影响非线性量规系统 (WINGS) 来评估肯尼迪航天中心 (KSC) 的先进技术项目。WINGS 方法使用表意因果图来揭示复杂问题中相互交织的标准及其因果关系。模糊集理论是一种有效的方法,它使用模糊逻辑来模拟定义不明确的问题中的不确定性。本研究提出的模糊 WINGS 方法通过识别依赖关系 (影响) 的方向及其强度以及评估标准的强度来揭示评估标准之间的相互依赖关系。模糊判断用于应对未经测试的新技术中的不确定性。传统的 WINGS 方法不考虑解空间中的参考点。为此,我们引入了理想解和最低点解的概念,这是 WINGS 的新概念,根据备选方案与理想解(或最低点解)之间的欧几里得距离对备选方案进行排序。最后,我们提出了一个案例研究,根据六个相互交织的标准和 38 个子标准对 KSC 的十个先进技术项目进行评估,以证明本研究提出的新模糊 WINGS 方法的适用性。
研究团队开发了自适应采样器ASr,一种基于任务多样性、熵和难度动态加权的分 布生成函数,以优化元学习模型的泛化性能,并为此提出了一种通用的元学习算法。 研究团队在多个基准数据集和不同学习场景下对所提方法进行了广泛实验,包括小 样本学习、跨域学习、多域学习和增量学习等,并从多个维度对方法的有效性、泛化性 、计算效率等进行了评估和对比,结果证明了所提方法在不同网络架构和元学习框架下 的优越性能和通用性。
摘要。目的:扩散加权磁共振成像(DW-MRI)是一种关键成像方法,用于以毫米尺度捕获和建模组织微体系结构。对测量的DW-MRI信号进行建模的常见做法是通过光纤分布函数(FODF)。此功能是下游拖拉学和连通性分析的重要第一步。具有数据共享的最新优势,大规模多站点DW-MRI数据集可用于多站点研究。但是,在获得DW-MRI期间,测量变化(例如,间和内部变异性,硬件性能和序列设计)是不可避免的。大多数基于模型的方法[例如,受约束的球形反卷积(CSD)]和基于学习的方法(例如,深度学习)并未明确考虑FODF建模中的这种变异性,从而导致在多现场和/或纵向扩散研究上的性能下降。
摘要。动态治疗方案(DTR)是一种提供精确药物的方法,该方法使用患者特征来指导治疗方法以实现最佳健康结果。已经提出了许多用于DTR估计的方法,包括动态加权的普通最小二乘(DWOLS),这是一种基于回归的方法,在易于实现的分析框架内具有双重鲁棒性来模拟模型错误指定。最初,DWOL方法是在连续结果和二元治疗决策的假设下开发的。是在临床研究的激励下,随后的理论进步扩大了DWOLS框架,以解决各种结果类型的二元,连续和多酸性处理,包括二进制,连续和生存类型。但是,某些方案仍未开发。本文总结了DWOLS方法的扩展和应用的最后十年,对原始DWOLS方法及其扩展进行了全面而详细的审查,并突出了其多样化的实际应用。我们还探讨了已经解决了与DWOL实施相关的挑战的研究,例如模型验证,可变选择和处理测量错误。使用模拟数据,我们提出了数值插图以及在R环境中的分步实现,以促进对基于DWOL的DTR估计方法的更深入的了解。
深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。
度量贝叶斯+UCB SimAgg RegAgg 模拟时间(小时) 47.45 78.14 78.13 预计收敛分数 0.7264 0.7273 0.7227 DICE 标签 0 0.9977 0.9978 0.9980 DICE 标签 1 0.6844 0.6657 0.6561 DICE 标签 2 0.7257 0.6430 0.6665 DICE 标签 4 0.7464 0.7603 0.7313
摘要:磁共振成像 (MRI) 是一种利用强磁场产生人体各部位图像的成像技术。通常进行的检查是脑部检查。这项研究是在巴厘岛曼达拉医院进行的。为了了解大脑的状况,可以进行 MRI 检查。MRI 可以产生称为序列的图像,这些序列产生 T1 加权图像 (T1WI)、T2 加权图像 (T2WI),从而产生具有不同强度的可见图像。为了获得 T2WI,时间回波 (TE) 和时间重复 (TR) 必须很长,以使脂肪和水有机会衰减,这样脂肪和水的对比度才能很好地显现出来。这项研究旨在确定 TR 变化对 SNR 值的影响,并确定最佳 TR 以产生良好的图像值。在脑部 MRI 上生成 T2WI SNR。这个街头小贩活动使用了 Phillips 1.5 特斯拉型 MRI 飞机。数据收集自20名患者,TR值有3种变化,分别为3,500毫秒、5,500毫秒和7,500毫秒,总共获取了60张图像。通过直接在MRI设备上测量ROI来评估组织SNR值。对脑脊液(CSF)组织、脊髓进行SNR值分析。依次获得的SNR值在CSF组织中为174.24、211.22和244.51,在脊髓组织中为78.53、80.64和84.81。这个街头小贩活动表明,给出的TR值越长,SNR值就会增加。这是因为长TR值能够在更多切片中评估网络并提供更好的噪声信号值。7,500毫秒的TR变化可以产生最高的SNR值,从而得到的图像非常好。
结果:在本研究中,假单胞菌属,20EI1能够降低黄曲霉的生长。此外,我们确定这种生长抑制是铁的。此外,假单胞菌20EI1减少或阻断了黄曲霉毒素的产生,以及环皮二唑酸和曲酸。在细菌的存在下改变了铁相关基因的表达,而参与产生黄曲霉毒素的基因被下调。铁补充部分重新建立了它们的表达。细菌还降低了其他继发代谢产物(SM)基因的表达,包括参与环皮二唑酸,曲酸和imizoquin生物合成的簇的基因,而聚类的基因与曲霉菌素相对应。有趣的是,全局SM调节基因MTFA被20EI1显着上调,这可能有助于观察到的SM发生变化。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 3 月 2 日发布。;https://doi.org/10.1101/2023.03.01.530710 doi:bioRxiv 预印本