摘要:将二氧化碳转化为化学品和燃料是当前学术界和工业研究的一个关键领域,其中热催化加氢制甲醇是最先进的路线之一。最近,结合行星边界框架的生命周期分析证实了该过程的可持续性,强调需要更便宜的二氧化碳和可再生氢气,以及一种具有高活性、选择性和耐久性的催化系统来满足经济要求。本文回顾了我们的研究工作,旨在从原子水平上了解突破性 In 2 O 3 基催化系统中活性位点的电子和几何特性,以指导其开发。深入的机理阐明表明,有限的氢活化能力以及水驱动烧结是纯 In 2 O 3 的局限性。通过共沉淀添加少量钯成功解决了前者,形成了牢固锚定在氧化物晶格上的微小簇,从而实现了前所未有的持续甲醇生产率。使用单斜氧化锆作为载体,使 In 2 O 3 在二维纳米结构中高度分散,诱导 In 2 O 3 上形成额外的活性位点,并有助于 CO 2 活化,为进一步提高活性和解决 In 2 O 3 烧结问题提供了一种有效的方法。总的来说,我们的研究结果为合理设计一种负载型和促进型 In 2 O 3 催化剂奠定了坚实的基础,具有大规模应用的光明前景。
ATJ 酒精喷气 ASTM 美国材料与试验协会 ANL 阿贡国家实验室 CAEP 航空环境保护委员会 CEF CORSIA 合格燃料 CLCA 后续生命周期评估 CORSIA 国际航空碳补偿和减排计划 CPO 粗棕榈油 CTBE 巴西生物乙醇科学技术实验室。DDGS 干酒糟和可溶物 ETJ 乙醇制喷气燃料 FFA 游离脂肪酸 FOG 脂肪、油和油脂 FT 费托合成 GHG 温室气体排放 GWP 全球变暖潜能 HEFA 加氢酯和脂肪酸 iBuOH 异丁醇 JRC 联合研究中心 欧盟委员会 LEC 垃圾填埋场排放信用 LCA 生命周期评估 LCF 低碳航空燃料 LCI 生命周期清单 MIT 麻省理工学院 MSW 城市固体废物 NBC 非生物成分 PFAD 棕榈脂肪酸馏出物 PSF 泥炭沼泽森林 REC 回收排放信用 RPO 精炼棕榈油 SAF 可持续航空燃料 SIP 合成异构烷烃 SPK 合成石蜡煤油 SKA 含芳烃的合成煤油 UCO 废食用油 Unicamp 坎皮纳斯州立大学 WTP 井泵 WTWa醒来吧
ATJ 酒精喷气 ASTM 美国材料与试验协会 ANL 阿贡国家实验室 CAEP 航空环境保护委员会 CEF CORSIA 合格燃料 CLCA 后续生命周期评估 CORSIA 国际航空碳补偿和减排计划 CPO 粗棕榈油 CTBE 巴西生物乙醇科学技术实验室。 DDGS 干酒糟和可溶物 ETJ 乙醇制喷气燃料 FFA 游离脂肪酸 FOG 脂肪、油和油脂 FT 费托合成 GHG 温室气体排放 GWP 全球变暖潜能值 HEFA 加氢酯和脂肪酸 iBuOH 异丁醇 JRC 联合研究中心 欧盟委员会 LEC 垃圾填埋场排放信用 LCA 生命周期评估 LCF 低碳航空燃料 LCI 生命周期清单 MIT 麻省理工学院 MSW 城市固体废物 NBC 非生物成分 PFAD 棕榈脂肪酸馏出物 PSF 泥炭沼泽森林 REC 回收排放信用 RPO 精制棕榈油 SAF 可持续航空燃料 SIP 合成异构烷烃 SPK 合成石蜡煤油 SKA 含芳烃的合成煤油 UCO 废食用油 Unicamp 坎皮纳斯州立大学 WTP 井至泵 WTWa 井至唤醒
通过电化学方法将 CO2 还原 (CO2R) 为乙烯和乙醇,可以将可再生电能长期储存在有价值的多碳 (C2+) 化学品中。然而,碳 - 碳 (C - C) 偶联是 CO2R 转化为 C2+ 的速率决定步骤,其效率低下且稳定性差,尤其是在酸性条件下。在这里,我们发现,通过合金化策略,相邻的二元位点可以实现不对称的 CO 结合能,从而促进 CO2 到 C2+ 的电还原,超越单金属表面上由缩放关系决定的活性极限。我们通过实验制备了一系列 Zn 掺入 Cu 催化剂,这些催化剂表现出增强的不对称 CO* 结合和表面 CO* 覆盖率,可在电化学还原条件下实现快速的 C - C 偶联和随之而来的加氢。进一步优化纳米界面处的反应环境可抑制氢气的释放并提高酸性条件下的 CO2 利用率。结果,在弱酸性 pH 4 电解质中,我们实现了 31 ± 2% 的高单程 CO 2 到 C 2+ 产量,单程 CO 2 利用率 > 80%。在单个 CO 2 R 流电池电解槽中,我们实现了 91 ± 2% 的 C 2+ 法拉第效率,其中乙烯法拉第效率高达 73 ± 2%,全电池 C 2+ 能量效率为 31 ± 2%,在 150 小时内以商业相关电流密度 150 mA cm − 2 实现 24 ± 1% 的单程 CO 2 转化率。
使用电动燃料 (e-fuels) 可以实现二氧化碳中性移动性,因此可以为化石燃料发动机或电池供电的电动机提供替代方案。本文比较了费托柴油、甲醇和以低温液体 (LH 2 ) 或液态有机氢载体 (LOHC) 形式储存的氢气的成本效益。这些燃料的生产成本在很大程度上取决于能源密集型的电解水分解。在德国生产 e-fuels 的选择可以与国际上具有优良可再生能源收集条件、因此平准化电力成本非常低的地区竞争。我们开发了一个涵盖整个过程链的数学模型。从生产所需的资源(如淡水、氢气、二氧化碳、一氧化碳、电能和热能)开始,随后进行化学合成、运输到德国的加油站,最后在车辆中利用燃料。我们发现生产地点的选择会对使用相应燃料的移动成本产生重大影响。尤其是在柴油生产的情况下,所应用的可再生能源满负荷小时数所驱动的平准化电力成本具有巨大影响。与其他技术相比,基于 LOHC 的系统对电力来源类型的依赖性较小,因为它的电力消耗相对较低,加氢装置的成本也较低。另一方面,运输路线的长度和加油站基础设施的价格显然增加了 LOHC 和 LH 2 的移动成本。关键词:电动燃料、氢气利用、氢气进口、LOHC、移动性
2015 年 4 月,美国环保署在《联邦公报》上发布了一份通知,邀请大家就我们对用于生产生物柴油、可再生柴油和航空燃料等生物燃料的芸苔籽油(“芸苔油”)原料的生产和运输所产生的温室气体 (GHG) 排放的分析发表意见(“2015 年 4 月芸苔油 FRN”) (80 FR 22996)。在 2015 年 4 月的芸苔油 FRN 中,我们邀请大家就我们打算将大豆油原料生产和运输相关的上游温室气体排放估算值(包括对农业和林业部门的间接影响)应用于未来对提议使用芸苔油作为生物燃料生产原料的设施特定请愿书的评估发表意见。 2022 年 6 月,美国环保署回应了可再生能源集团 (REG) 针对其位于路易斯安那州盖斯玛的加氢处理设施生产的可再生柴油和副产品的设施特定请愿书(“2022 年 6 月 REG 盖斯玛决定”)。1 根据针对 2015 年 4 月卡里纳塔油 FRN 收到的公众意见、REG 请愿书中提交的信息以及有关卡里纳塔油生产实践的最新信息,2022 年 6 月 REG 盖斯玛决定包括对卡里纳塔油生命周期温室气体影响的更具体分析,而不是 2015 年 4 月卡里纳塔油 FRN 中反映的基于大豆油的方法。我们还将我们对 2015 年 4 月卡里纳塔油 FRN 公众意见的回应附在 2022 年 6 月 REG 盖斯玛决定中。
近年来,随着可再生能源的快速发展,储能系统在电力系统中发挥着越来越重要的作用。储能技术是利用新型清洁能源的关键技术。目前,储能技术主要由化学储能、电化学储能、热质量储能以及储能系统集成与安全组成(如图1所示),这些技术都对热管理和热安全提出了长期挑战。随着储能技术的进步,其安全性特别是热安全性受到广泛关注。有效管理储能系统中的热量,确保其安全运行成为当前研究和应用的热点。本期以此为基础,探讨储能、热安全与管理领域的新技术发展,共包含6篇文章。在环保排放标准和能源危机的驱动下,氢能已成为零碳清洁能源(Zou等,2023)。近年来,燃料电池汽车(FCV)成为未来汽车产业发展的重要焦点,加氢站在氢能技术融入日常交通中扮演着至关重要的角色(Miao et al.,2024)。尽管取得了这些进展,但氢气密度低导致泄漏时扩散迅速,在储存、运输和使用过程中存在火灾、爆炸等重大安全风险。这些问题阻碍了全球氢能应用的普及和相关基础设施的发展(Wang et al.,2022)。尽管已经有大量研究关注氢气泄漏在各种环境中的扩散特性,但大多数研究集中在开放空间。在封闭空间(如天花板)中,明显缺乏关于氢气泄漏扩散的可靠数据。此外,虽然先前对自由射流的研究已经确定了特定的模式,但对封闭空间的研究通常提供了广泛的数据。
摘要:全球对氢能的热情推动了各种旨在利用氢能潜力的举措。特别是,低碳氢因其在减少钢铁、水泥和重型运输等难以减排行业的温室气体排放方面的关键作用而受到认可。本研究重点介绍意大利所有与氢相关的融资计划,全面概述各种活动及其地理位置。所审查的资金来自国家复苏和复原力计划 (PNRR)、直接由欧洲共同利益重要项目 (IPCEI) 资助的项目以及由私营公司或其他资金来源 (氢谷) 支持的多项举措。PNRR 计划中的具体征集提案概述了资金的分配,重点是棕地地区的氢气生产(到 2026 年预计有 52 个氢气生产厂)、难以减排行业的氢气使用以及为公路 (到 2026 年有 48 个加油站) 和铁路运输 (10 条氢能铁路线) 建立加氢站。本文详细描述了获得资助的举措(共 150 个),包括它们的地理位置、类型和规模(如有)以及它们获得的资金。本概述揭示了哪些地区优先考虑重型运输中的脱碳工作,尤其是跨境商业路线,例如意大利北部地区。相反,一些地区更注重当地交通(通常是公共汽车)或工业部门(主要是钢铁和化学工业)。此外,该研究还提出了旨在加强国家氢相关技术制造能力的举措,以及新的氢能监管和激励计划。这项分析的最终目标是促进现有和计划中项目之间的联系,刺激整个氢能价值链上的新举措,提高利益相关者对氢能的认识,促进合作和国际竞争力。
常见问题 1. 空气产品公司是谁? 空气产品公司是一家世界领先的工业气体公司,已有 80 多年的历史。空气产品公司是世界上最大的氢气生产商,也是开发和执行推动能源转型的低碳氢气大型项目的先行者。该公司开发、设计、建造、拥有和运营一些世界上最大的工业气体项目,包括最大的绿色氢气项目。 2. 空气产品公司正在建设什么? 2022 年 10 月 6 日,空气产品公司宣布计划投资约 5 亿美元建造、拥有和运营一座日产 35 公吨的设施,利用水力发电和电解圣劳伦斯河的水来生产绿色液态氢。该项目还包括绿色氢液化、储存、分配和纽约州加氢站的运营。该设施的商业运营计划于 2026-2027 年开始。根据市场情况,未来的开发活动可能会将设施的总产能提高到每天 70 公吨。 3. 氢气工厂将设在哪里? 位于纽约州马塞纳的空气产品工厂将位于 Pontoon Bridge Road(也称为外北大街)东侧一块 90 英亩的地块上,就在现有美铝工厂的入口处。马塞纳之所以被选为该工厂的厂址,是因为其拥有熟练的劳动力、可以获得可再生水力发电,并且靠近东北部重型运输和工业应用的绿色氢气市场。 4. 这个项目的经济效益是什么? 该项目预计将在三年内创造约 500,000 小时的建设工作岗位,而在建设高峰期则创造约 350 个就业岗位。一旦该设施投入运营,它将在纽约州马塞纳地区创造 90 个全职绿色就业岗位,平均年薪和福利约为 100,000 美元。
尽管已开发出多种疫苗来遏制严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 在人类中的传播,但为动物(包括宠物)开发的疫苗却非常少。为了对抗人与动物、动物与动物和动物与人之间传播的威胁以及新的病毒变种的产生,我们开发了一种亚单位 SARS-CoV-2 疫苗,该疫苗基于在昆虫细胞中表达的重组刺突蛋白胞外结构域,然后与适当的佐剂配制而成。将 16 只 8–12 周龄的杂交雌性和雄性小猫(每组 n = 4)随机分为四个治疗组:仅刺突蛋白;刺突加 ESSAI 水包油 (O/W) 1849102 佐剂;刺突加氢氧化铝佐剂;和 PBS 对照。所有动物均间隔 2 周肌肉注射两次疫苗,每次注射 5 µ g 刺突蛋白,体积为 0.5 ml。在第 0 天和第 28 天,采集血清样本以评估抗刺突 IgG、抗体对刺突与血管紧张素转换酶 2 (ACE-2) 结合的抑制、针对野生型和 delta 变异病毒的中和抗体以及血液学研究。在第 28 天,所有组均通过鼻内方式接种 SARS-CoV-2 野生型病毒 10 6 TCID 50。在第 31 天,采集组织样本(肺、心脏和鼻甲)进行病毒 RNA 检测和病毒滴度测定。两次免疫后,两种疫苗均诱导高滴度血清抗刺突 IgG,可抑制刺突 ACE-2 结合并中和野生型和 delta 变异病毒。两种佐剂疫苗配方均能保护幼猫免受上呼吸道病毒的排出以及下呼吸道和心脏病毒的复制。这些令人鼓舞的数据值得继续评估疫苗保护猫免受 SARS-CoV-2 感染的能力,特别是防止传播的能力。