• Bypass capacitor placement – Place near the positive supply terminal of the device – Provide an electrically short ground return path – Use wide traces to minimize impedance – Keep the device, capacitors, and traces on the same side of the board whenever possible • Signal trace geometry – 8mil to 12mil trace width – Lengths less than 12cm to minimize transmission line effects – Avoid 90° corners for signal traces – Use an unbroken ground plane在信号迹线下方 - 带有地面的信号迹线周围的洪水填充区域 - 对于超过12厘米的迹线•使用阻抗控制的迹线•源 - 端端使用输出附近的串联阻尼电阻器•避免分支;缓冲信号必须单独分支
随着技术的不断发展,由硅制成的传统晶体管使设备变得更小,更强大,正面临着局限性。为了克服这些挑战,正在探索包括FinFET和GNRFET在内的新型晶体管。finfets以3D设计,以改善对电流的控制,非常适合非常小的设备。gnrfets,由石墨烯(非常薄的材料)制成,承诺效率更好,速度更快,并且由于其独特的特性而使用的功率更少。本文通过分析它们在电路中的性能进行比较,专门针对一个称为“完整加法器”的常用电路。我们发现,尽管FinFET非常适合当前需求,但GNRFET提供了更好的能源效率,并且可能是电子产品的未来,尤其是在节省功率很重要的设备中。分析强调了如何将每种类型的晶体管应用于下一代电子产品中,帮助工程师设计更强大和节能的设备。关键字:FinFET,GNRFET,纳米级晶体管,石墨烯Nanoribbons,3D栅极结构,静电控制,短通道效应,高载流子迁移率,低功率操作,半导体技术,小型技术,小型技术,小型化,设备制造,高级CMOS,高级CMOS,下一代电子产品。1。简介
tmohanrao2020@gmail.com 摘要:乘法器在信号处理和基于 VLSI 的环境应用中起着关键作用,因为与其他设备相比,它消耗更多的功耗和面积。在实时应用中,功率和面积是重要参数。乘法器是必不可少的组件,因为与任何其他元件相比,它占用较大的面积并消耗更多的功耗。我们有很多加法器来设计乘法器。在本文中,使用金字塔加法器,它使用半加器和全加器来提高速度并减少乘法器中使用的门数量,但延迟并没有显着减少。如果我们用 XNOR 和 MUX 代替普通的半加器和全加器来修改金字塔加法器,那么与普通的 16 位加法器相比,这种金字塔加法器使用的门更少,延迟也更少。金字塔加法器中 XNOR 和 MUX 的使用减少了延迟,因为 MUX 功能仅在输入中选择输出。使用这种金字塔加法器可以大大减少乘法器延迟。关键词:MUX,FPGA,DSP,加法器,2.1块,2.2块
1. 引言 VLSI 技术在速度和尺寸方面的进步使得实现并行乘法器硬件成为可能。技术发展进一步确保了更好的性能特征和在 DSP 系统中的广泛使用。它执行诸如累加多个乘积之和之类的操作的速度比普通微处理器快得多。DSP 架构旨在执行并行操作,从而降低计算复杂性并提高此类应用中重复信号处理所需的速度[1]。这些功能旨在提高可编程 DSP 的速度和吞吐量。对于给定的应用,有大量可编程 DSP 可供选择,具体取决于速度、吞吐量、算术能力、精度、规模、成本和功耗等因素[2]。单芯片乘法器的引入及其与微处理器架构的结合是能够实现 DSP 功能的商用 VLSI 芯片面市的最重要原因[3]。并行前缀加法器被认为是最有效的二进制加法电路。它们的规则结构和快速性能使得它们特别适合实现 VLSI[4]。数字的乘积生成需要一个处理器周期。无论是基于软件的移位和加法算法,还是一个