GTI Energy 与加州大学默塞德分校合作,提升太阳能热传输和存储技术。太阳能热传输和储存技术将两级聚光太阳能集热器与粒子热传输和储存系统相结合,以提供高达 1,112 华氏度 (⁰F)(600 摄氏度 (⁰C))的经济高效、按需高温工业过程热量。目的是在工业现场展示该技术,以减少过程加热燃料的使用和碳足迹。该团队为主站点改造开发了概念系统设计,包括热平衡、工艺流程图和设备位置。加州大学默塞德分校设计并测试了两级收集器和多个连接的四米长接收器,而 GTI 则专注于匹配的 1,202 °F (650 °C) 粒子热传输和储存系统。加州大学默塞德分校的太阳下测试表明,在两级收集器中的吸收器上产生的强烈太阳辐射下,吸收管出现弯曲问题。为解决弯曲问题,开发了一个自洽迭代模型,该模型包含集成的照明、热和变形模块。该模型用于优化吸收管长度,考虑变形、整体集热器效率和安装复杂性,最终得出建议的吸收器长度为 2.7 米。相关的粒子热传输和存储系统经过成功设计、建造和测试,显示出稳定的粒子流速、最小的粒子降解和可接受的压降。该团队与 Stanley Consultants 合作,准备了概念和初步工程包以支持未来的开发和商业化工作。它们包括 2 兆瓦热系统的图表、项目定义、成本估算和市场评估。然而,解决吸收器弯曲问题所花费的时间和精力使团队无法在可用的项目预算和时间表内推进系统的现场演示。
发电机类型 全碳 混合 全电动 电力份额 % 0 30 100 总额定功率 kW 8,720 8,720 8,720 燃气燃烧器额定功率 kW 8,720 6,100 0 电气元件额定功率 kW 0 2,620 8,720 环境空气流速 kg/h 63,300 63,300 63,300 运行温度 °C 550 550 550 喷雾干燥粉末产量 (*) kg/h 21,200 21,200 21,200 总用电量 kW 7,850 7,850 7,850 热负荷系数 % 90 90 90 燃气燃烧器用电量 kW 7,850 5,230 0 CO 2 排放量 (**) t/年11,460 7,630 0 (*)泥浆含水量为 34%,粉末输出含水量为 6% (**)每年运行时间为 7,000 小时
具有分散热量生产的地区供暖网络非常适合包括在空间有限的城市地区的可再生能源份额。一个新概念是一个基于生产的地区供暖网络,其中一些甚至所有建筑物都配备了分散的建筑物水平的热量储藏和热量产生植物。为了利用相互连接的加热网络的全部潜力,带有剩余热量的建筑物旨在将热量转移到有加热需求的建筑物中,以防止中央供暖厂的激活。这项工作提出了一项关于使用模型预测控制策略来管理区域供暖网络中建筑物之间双向传热的初步可行性研究。我们将此问题提出为最佳控制问题,并为每个潜在的传热连接结合了二进制决策变量。这会导致难以解决的混合企业非线性优化问题。该问题通过基于快速的基于梯度的优化算法与组合积分近似策略相结合解决。进行了一个有关使用建筑级太阳能热收集器和储罐的住宅供暖网络的案例研究。优化操作与从一个月的测量中获得的实际操作进行了比较。结果表明,具有双向传热的优化策略可以利用整个网络中产生的总热量。在案例研究中,这导致了中央热供应商所需的热能的近75%。仅当所有建筑物产生或储存的热量不足以满足网络内的总热量需求时,才需要中央供暖提供商。
摘要:将高度多孔石墨烯(GO)气凝胶整体加热到超高温度的闪光灯加热被用作低碳足迹技术,以设计功能性气凝胶材料。首次证明了Airgel Joule加热至3000 K,并具有快速加热动力学(〜300 K·min-1),从而实现了快速和节能的闪光加热处理。在一系列材料制造的挑战中利用了超高温度闪光灯焦耳加热的广泛适用性。超高温度焦耳加热用于快速在快速时间尺度(30-300 s)的水热气凝凝胶快速地石墨退火,并大大降低了能量成本。闪光气凝胶加热至超高温度,用于原位合成超铁纳米颗粒(PT,CU和MOO 2)的原位合成,并嵌入了混合气瓶结构中。冲击波加热方法可以使形成的纳米颗粒的高渗透量均匀性,而纳米颗粒的大小可以通过控制1到10 s之间的焦耳加热持续时间来轻松调节。因此,此处介绍的超高温度加热方法对基于石墨烯的气凝胶的多种应用具有重要意义,包括3D热电材料,极端温度传感器和流动中的气瓶催化剂(电)化学。■简介
a。在计划中显示所需的代码和设备维护的间隙。b。找到设备,阀门和其他组件,以便容易访问服务。c。在计划中识别从每个MER到建筑物外部的最大设备或组件的拆卸路径。拆除路径不应需要拆除门,墙壁或其他永久建筑物的建筑。d。提供门或可移动面板,以从MER到建筑物的外部拆除最大的设备或组件。e。必须通过标准的出口楼梯或电梯进入MER和顶层公寓。船上的梯子是不可接受的。f。提供将设备从MER拆除到建筑物等级的规定。如果不可用直接电梯通道,请提供一种使用电梯访问地板的方法,或提供其他从建筑物中拆除的替代方法。对于顶层公寓的屋顶安装设备或设备,必须考虑将设备从屋顶上拾取设备并降低坡度。g。为所有地板安装的机械设备提供混凝土管家垫。
在SW Scania中,Arnager Greensand在南部最厚,向RFZ伸出。体积强烈影响储存的热量结果,并通过解释钻孔芯和老式有线logs的地层的基础和顶部边界来确定。
强制对流沸腾是一种有效的冷却技术,用于热载应用中的温度管理。由于对计算能力的不断增长的需求,微电子的快速发展在科学家和工程师面前设定了有效的微处理器的有效温度控制的任务[1,2]。此类应用的三维集成微处理器中的体积热通量已经达到10 kW/m 3 [2],并且此类处理器中的热通量分布可能非常不平衡。除此之外,已经开发了基于GAN晶体管的新一代电力电子产品,它具有高密度能量转换所需的特征,这将需要密集的冷却,[3]。在通道和微型通道中沸腾的流量已经积极研究[4-5]。例如,在[6]中,研究了具有均匀加热壁的微通道中的纵横比的影响,作者发现该比率对传热系数有很大的影响。在[7]中,研究了硅微通道水槽中的饱和水的饱和水,并研究了微通道的持续液压直径和不同的长宽比。已发现纵横比对传热特征有很大影响。然而,墙壁过热的关键问题,流动的固有不稳定以及在常规连续平行的微通道中的关键热通量值低,为在具有高热量磁通量的设备中实际应用的微通道散热器实际应用带来了严重的问题,[8]。在[9]中,研究了通道高度对传热的影响和具有不均匀加热(流量宽度大于加热器宽度)的平坦微型通道中的临界热通量。然而,尽管加热器与通道宽度之比的影响尚不清楚,尽管它可能对微型和微通道的沸腾传热效率产生重大影响。
摘要:锂离子电池(LIB)具有高能量/功率密度,低自我放电速率和较长循环寿命的优势,因此被广泛用于电动汽车(EVS)。但是,在低温下,Libs的峰值功率和可用能量急剧下降,充电期间锂镀层的风险很高。这种不良的性能显着影响电动汽车在寒冷天气中的应用,并极大地限制了高纬度地区的电动汽车的促进。最近这项挑战引起了很多关注,尤其是调查低温下LIB的性能下降并探索解决方案。但是,在此主题上存在有限的评论。在这里,我们彻底回顾了有关电池性能降低,建模和预热的最新技术,旨在推动有效的解决方案来解决LIBS的低温挑战。我们概述了在低温下LIB的性能限制,并量化了在低温下LIB的(DIS)充电性能和电阻的显着变化。考虑到低温影响因素的各种模型也被制表和总结,并改进了描述低温性能的建模。此外,我们对现有的加热方法进行了分类,并强调诸如供暖率,能耗和终生影响等指标,以提供对加热方法的基本见解。最后,概述了当前关于低温LIB的研究的局限性,并提供了未来研究方向的前景。
除了在此图表上指出的激励措施外,阿米伦密苏里州与HVAC分销商合作,通过提供折扣,教育和培训来促进更高效率设备的安装。对于诸如18+ SEER2 CAC和ASHP等设备,以及小型/多切片(导管和/或无管道)系统,激励措施因程序和测量类型而异。向您的承包商询问详细信息和回扣机会。