变量OMC Gen H的维护和发电OMC NET H的维护和运行成本的运行成本和传输网络的运行成本,我是电压p n的状态; E S; g;我 ; h主动动力产生的p pns s;我 ; h主动功率无法提供p H,我由电解器Q PNS所消耗的主动功率;我 ; h反应能力无法提供Q H,我由电源转换器u Ch H耗尽的反应能力; i氢充电u dch h; i Hydrogen discharge u * , h Usage of power line/transformer u g , i , h Usage of power capacity x g , i , t Investment decision in technology type g x esr i ESR Investment decision at node i f h , i Heating not served with H 2 ENSC Energy not served cost HNS Total heating not served OME Operation and Maintenance of the Electrolyser TC Total cost TEC Total electricity generation cost TEmiC Total emissions cost TInvC Total investment cost TMC Total维护和操作成本
在激光驱动惯性约束聚变 (ICF) 中,高强度激光用于驱动胶囊达到核聚变所需的压力和温度条件 [1]。这需要多束重叠的激光束在聚变胶囊周围的等离子体中传播。等离子体介导激光束之间的能量转移,这可能会破坏能量耦合和/或导致辐照不均匀性 [2, 3]。为了解释这种跨光束能量转移 (CBET),在用于模拟 ICF 实验的流体动力学代码中实现了线性模型 [4, 5]。预测这种能量转移的能力对于所有激光驱动 ICF 概念的成功都至关重要。光束之间的功率传输对等离子体条件很敏感。图 1(a) 突出显示了 CBET 对离子温度的敏感性,强调了准确的模型在确定等离子体条件以预测其对内爆的影响方面的重要性。等离子体条件的不确定性导致在建模和实验可观测量之间隔离误差的挑战 [6],这使人们很难理解线性 CBET 理论的局限性 [7]。粒子内模拟表明,当离子声波被驱动到大振幅时,非线性效应将改变能量传递,导致偏离线性 CBET 理论 [8, 9]。早期的实验似乎证实了这一情况,表明需要非线性物理来模拟相互作用,但这些实验主要依靠流体动力学建模来确定等离子体条件 [10, 11],而由于等离子体条件的不确定性,对饱和物理的理解难以捉摸。迄今为止最完整的研究使用电子等离子体波的汤姆逊散射来测量电子温度和密度,同时测量能量传递 [12, 13]。在较小的离子声波振幅(δn/ne < 1%)下,这些实验可以通过线性 CBET 理论很好地建模,但对于较大的离子声波
由于连续的阴雨天或阴天会导致太阳辐射间歇,这是简易小型太阳能干燥机的一个限制。这些条件常常使它们无法使用。通过加入储存系统(热积累)和/或辅助能源,即使在日照量低的时期也可以连续进行干燥过程或脱水。因此,本研究模拟并评估了一种混合系统的热行为和能量行为,该系统用于加热流向太阳能食品干燥机脱水室的空气。用于模拟的软件是 TRNSYS。模拟的混合系统由一个平板太阳能集热器和一组电阻器组成,可确保空气以恒定的温度进入脱水室。选定的目标温度为 70 o C,假设脱水室中没有食品。考虑到巴西南部城市的气候条件,采用四个电阻器(总功率为 1900 W,功率分别为 1000 W、500 W 和 200 W)的布置足以保证空气以恒定的温度进入。
本文档是公认的手稿版本的已发表作品,该作品以ACS Nano的最终形式出现,版权所有©2022 American Chemical Society,在出版商的同行评审和技术编辑之后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acsnano.2c06682。
本手册的编写由美国政府赞助。美国、美国国防部、其任何雇员、其任何承包商、分包商或雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性作任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。
近年来,热烟草产品(HTP)逐渐进入市场,并且由于其低风险(与传统香烟相比),因此在消费者中越来越受欢迎。随着国际市场中HTP的受欢迎程度和比例越来越多,人们越来越关注HTP的安全评估,但仍然缺乏对HTP安全研究的系统评价。在这篇综述中,HTP的有害组成部分,多器官功能编程效果(包括呼吸系统,心血管系统等。)和效应产生的机制(包括氧化应激,炎症反应等)进行了系统的审查,详细比较了HTP和传统香烟的安全效应,并讨论了HTP安全领域的缺点和未来的研究方向。总而言之,这篇评论符合当代“烟草和健康”的一般趋势,可帮助人们更系统地理解和评估HTP,并为烟草行业提供强大的理论支持和文献基础,以进行HTP风险评估和暴露。
但是,电力需求也会迅速波动。例如,当一家人密集型公司关闭生产线或开关大型生产机器时,这种情况就是这种情况。相比之下,发电的供应也发生了波动。在电力的情况下,由于使用挥发性可再生能源,尤其是能量转化导致电源波动的增加。风速和阳光在一天的过程中或每小时不变。这种波动通常在大型供应网络(例如电网)中至少在很大程度上具有很小的信号,至少在很大程度上是相互平衡的。然而,某些波动仍然存在,例如在寒冷天气或周末的功率需求增加,而这些需求仅部分可预测。多年来收集的预测值确保可以通过电力量预测以预测方式计算/建模需求满意度,因此可以得出所需的电量。
地热能桩也称为热桩,或能量基础或能量桩直接采用垂直钻孔闭环地面源源热泵(GSHP)技术(挪威的能源井)进入桩基础,在该基础中,在其中安装了热交环。能量桩具有通过使用地面作为热源和存储来提供建筑空间加热/冷却的新建筑物的巨大潜力。在冬季,建筑物的能量堆基础被用作热源,以使建筑物在夏季保持温暖和储藏量,以保持建筑物凉爽。最近,随着格拉斯哥协议中规定的,到2030年,到2030年,欧盟致力于将温室气体排放降至1990年的水平,尤其是在奥地利,瑞士,德国和英国等欧洲国家的使用。市场上有多种类型的桩基础,例如铸件和预制驱动的桩。世界各地的大多数项目都在利用位于原位的能源堆,但使用预制驱动的桩仍然很低。最近,我们在NTNU开发了一个驱动的能量桩溶液并申请了专利。谈话将解释这项新兴的专利技术作为能源/存储。
为了去除和排出液体、气溶胶和雾气,未经处理的压缩空气流首先通过 0.01PPM 抛光预过滤器。然后将过滤后的压缩空气向上引导通过两个装有专门设计的净化滤芯的腔室之一。每个滤芯包含一个高性能干燥剂床和一个颗粒后过滤器。干燥剂材料吸附剩余的水蒸气,整体后过滤器通过收集任何剩余的颗粒物完成该过程。然后,压缩空气作为清洁、干燥的公用设施输送到分配系统或使用点。
简介:人们担心在临床环境中使用大麻材料的人的健康状况已经受到损害,并且可能更容易受到材料上存在的微生物群的机会性感染。最令人担忧的是吸入给药,即在蒸发器中加热大麻植物材料,雾化并吸入以获取生物活性成分。众所周知,加热到高温可以杀死包括细菌和真菌在内的微生物;然而,微生物的死亡取决于暴露时间和温度。目前尚不清楚在临床环境中使用的商业蒸发器在指定的温度和时间下加热大麻是否会显著降低大麻植物材料中的微生物负荷。