MoSi 2 是一种导电材料,广泛应用于高温环境。本文介绍了通过陶瓷注射成型 (CIM) 生产含 MoSi 2 的电阻加热元件。烧结部件由嵌入玻璃化长石和 Al 2 O 3 基质中的 MoSi 2 颗粒组成。通过改变导电相的含量可以精确调整烧结部件的导电性。为了开发注塑原料,评估了四种粘合剂系统。相应的原料在传统模具以及增材制造的可溶模具中注塑成不同的几何形状。对于每种原料,都根据热重测量制定了脱脂和烧结程序。脱脂温度越高,MoSi 2 氧化越多,样品导电性越差。因此,烧结部件的导电性以及密度用于评估原料的适用性。最后,辉光试验证明 MoSi 2 /Al 2 O 3 /长石复合材料部件可用作加热元件,并且通过将红外测温数据与计算模拟相结合,可以可靠地获得热导率、电导率和热容量等重要的材料数据。
› 通过外部实现自动装载/卸载过程(更换液压/气动组件、桥板的机电执行器、自动货物固定、除霜加热元件等)。能源供应
ZOPPAS Industries供暖元素技术是用于太空卫星,航天器,加压模块和地面天线的全球加热器和系统供应商,ESA/ESCC合格自1992年以来。柔性加热元件由两个绝缘层之间层压的蚀刻箔电阻元件组成。由Zoppas Industries加热元件产生的柔性加热箔技术从最低厚度仅为0.15 mm开始,它们允许从加热器的薄设计和直接粘合到应用程序中获得出色的传热结果。这些加热器具有薄的设计和结构,由柔性材料制成,以适合几乎任何类型的设备。加热器可以应用于最复杂的形状,几何形状,曲线和管道,而无需牺牲效率或可靠性。柔性加热器提供快速加热和冷却速度,以确保各种瓦特密度的均匀热量分布。
对于每个测试,测试单元的内部都充满了纸板箱,每个纸板都装满了1,2kg的包装纸。取决于预定义的测试设置一个或几个纸板箱,上面装有牢房或电池组(参考图3和4)。为了模拟最坏情况,火负荷主要放置在容器边缘,底座,门和侧面板旁边。将100 W加热元件放置在细胞之间,以诱导热失控。最多使用5-10个加热元件,以同时在容器内部的各个位置诱导热失控。有关详细的设置,图纸和图片,请参见附带的演示文稿。为了确定对容器的损害是否影响火灾的严重程度,每个0.8mm铝制面板都在最后两次测试中造成了100mm长的切割。
1.备用加热元件 2.U 型管热交换器 3.维修人孔 4.镁阳极 5.温度和压力释放阀 6.排气阀 7.膨胀容器 8.循环泵 9.太阳能传感器 10.隔离阀
在这种情况下,电流通过加热元件,加热元件被加热(通过焦耳加热)并因此发光。加热元件发出的光被储能材料吸收,因此在充电过程中储能材料也会升温。由于温度高,储能材料会发光,需要时光可以通过光伏技术将光转换回电能,见图 1。在这种类型的储能系统中,光子用于将储能材料从相当低的温度加热到高温,由于材料的热容量,可以储存大量的能量。因此,这种类型的储能可以具有高能量密度,与锂离子电池相似甚至更高。 [13] 由于储能基于电和光子之间的转换,因此这种类型的电池可以称为“光子电池” [13] 或“光子辉光电池”,因为热的储能材料会发光。这类电池中的储能材料可以由多种不同的材料制成,因此,廉价且丰富的储能材料可以制成非常低成本和大规模的电池。 [13] 例如,不同的氧化物在高温下稳定,如 Al 2 O 3 、 MgO、SiO 2 和 ZrO 2 ,或这些氧化物的混合物,也常用作高温炉中的“燃料砖”,可用作储能材料,而且成本可能非常低。 然而,在将热储能材料发射的辐射转换回电能的过程中,可能会有很大的损失。 在本文中,我们特别研究了使用基于量子点 (QD) 的光伏电池和基于钙钛矿的光伏电池的组合的可能性,以高转换效率将储能材料发射的宽波长范围的光子转换为电能。测量了储能材料两种不同温度下的模拟光谱的光伏响应和电功率输出。能量转换源于