01凝结可能发生在访问端口周围的区域。可以将访问端口放置在自定义位置以获得额外费用。使用此选项时未授予02 UL标记。03仅耐热至最大。200°C。 04仅在230 V级的单位上可用。06加热时间可能由于较低的热电导率而增加。 07额外的热量输入可能会影响温度行为。 09与可选的访问端口,带窗户和室内照明的门结合在一起。 10在23升单元上不可用。 11在23升或53升单位上不可用。 12仅在230 V或400 V的单位上可用。13安装和连接在单位位置进行;仅在咨询时在公司内部运输。 14我们建议使用活页夹服务合同来涵盖单位检查,校准和验证。 15 OQ根据黄纸=所有OQ清单的工厂验证文档完成。 16传感器校准是在经过认可的校准实验室中进行的。 17校准是根据粘合剂工厂标准进行的。 18个报价的价格不包括旅行费用。 请参阅有关您所在地区的旅行费用的活页夹服务章节。 报价在瑞士执行的服务价格不包括特定国家 /地区的附加费(可根据要求提供)。 19有关其他附件,请参阅过程文档章节。 20订购智商/OQ资格文件夹和关联的智商/OQ执行时,我们为这两个项目提供15%的折扣。200°C。04仅在230 V级的单位上可用。06加热时间可能由于较低的热电导率而增加。07额外的热量输入可能会影响温度行为。09与可选的访问端口,带窗户和室内照明的门结合在一起。10在23升单元上不可用。11在23升或53升单位上不可用。12仅在230 V或400 V的单位上可用。13安装和连接在单位位置进行;仅在咨询时在公司内部运输。14我们建议使用活页夹服务合同来涵盖单位检查,校准和验证。15 OQ根据黄纸=所有OQ清单的工厂验证文档完成。16传感器校准是在经过认可的校准实验室中进行的。17校准是根据粘合剂工厂标准进行的。18个报价的价格不包括旅行费用。请参阅有关您所在地区的旅行费用的活页夹服务章节。报价在瑞士执行的服务价格不包括特定国家 /地区的附加费(可根据要求提供)。19有关其他附件,请参阅过程文档章节。20订购智商/OQ资格文件夹和关联的智商/OQ执行时,我们为这两个项目提供15%的折扣。订购智商/OQ/PQ资格文件夹和关联的IQ/OQ/PQ执行时,我们为IQ/OQ/PQ文件夹的项目提供15%的折扣。
钢 (SS) 与 AISI 400 系列马氏体不锈钢 (参考文献 10、11) 相似,但它仍然非常出色,并且可以采用任何常见的电弧、电阻或高能量密度焊接工艺进行焊接。无需预热 (参考文献 12-I 6) 或 PWHT 来防止开裂或恢复延展性 (参考文献 10、1 [ ])。在这种材料中,由于微观结构中存在残余奥氏体 (参考文献 12),紧邻熔合区的热影响区 (HAZ) 可以通过焊接加热和冷却循环 (参考文献 12、15、17) 有效地退火或软化。因此,这种材料可以在时效条件下焊接而不会产生裂纹(参考文献 11、15),因为焊接热量会导致 HAZ 局部软化(参考文献 12)。此外,在固溶处理 (ST) 条件下焊接不会导致固溶处理结构出现明显的沉淀硬化,因为焊接期间的加热时间太短(参考文献 12、14、15)。对于焊接 17-4 PH SS,通常首选匹配成分或低强度高延展性不锈钢的填充金属和电极(参考文献 1、11、15、16)。用匹配填充金属制成的焊件可以时效到与母材相当的强度水平,并用于生产高强度焊件。但是,如果允许较低的强度水平,则可以使用奥氏体不锈钢焊接金属。
利用相变材料 (PCM) 等热存储单元是改进太阳能空气加热器 (SAH) 的合适方法。本研究试图评估 PCM 质量值对 SAH 热动力学和热性能的影响。为此,开发了一个分析热力学模型,并通过可用的实验数据进行了验证。该模型提供了一个强大的数值框架来模拟相变现象,并分析使用各种 PCM 质量的 SAH 的热动力学和热性能。使用开发的分析模型考虑了四种情况,包括使用 0、30、60、90 千克 PCM 的 SAH。所得结果表明,通过将 PCM 质量增加到 0 到 90 千克之间,最高出口温度降低了约 20%;然而,加热时间延长到太阳能供应不足的时期。与不使用 PCM 的 SAH 相比,使用 90 千克 PCM 质量的 SAH 的热性能提高了近 14.5%。采用 90 千克 PCM 的 SAH 的热性能略高于采用 30 千克 PCM 的 SAH;因此,存储的热能中很大一部分在夜间通过与周围环境的热交换而损失。所得结果还表明,尽管存在潜热能,但由于石蜡的热导率低,日落后采用不同 PCM 质量的 SAH 的出口空气温度曲线接近。
摘要:在过去的几十年中,对半导体硅的激光消融进行了广泛的研究。在超短脉冲结构域中,无论是在FS尺度还是PS尺度上,硅的消融中的脉冲能量阈值都非常依赖于脉冲宽度。然而,在NS脉冲量表中,对脉冲宽度的能量阈值依赖性尚不清楚。这项研究阐明了NS NIR激光消融硅的相互作用能量依赖性。通过脉冲能量沉积速率确定消融或熔化的水平,该脉冲能量沉积速率与激光峰值成正比。较短的脉冲宽度高峰值功率可能会引起表面消融,而较长的脉冲宽度可能会诱导表面熔化。随着脉冲宽度从26增加到500 ns,消融阈值从5.63增加到24.84 j/cm 2。随着脉冲宽度从26增加到200 ns,熔化阈值从3.33增加到5.76 j/cm 2,然后一直保持恒定直至500 ns,最长的宽度。与较短的脉冲宽度不同,较长的脉冲宽度不需要较高的功率水平来诱导表面熔化,因为可以在较低的加热时间较长的脉冲宽度时诱导表面熔化。表面熔化的线宽度小于聚焦点尺寸;该线在缓慢的扫描速度下以连续线的形式出现,或者以高扫描速度以隔离点的形式出现。相比之下,从消融中的线宽度显着超过了聚焦的点大小。
摘要:脱碳是材料表面在高温氧化环境中发生的一种不希望出现的碳损失现象。钢在热处理后的脱碳问题已被广泛研究和报道。然而,到目前为止,还没有关于增材制造零件脱碳的系统研究。电弧增材制造 (WAAM) 是一种生产大型工程零件的高效增材制造工艺。由于 WAAM 生产的零件通常尺寸较大,因此使用真空环境来防止脱碳并不总是可行的。因此,有必要研究 WAAM 生产零件的脱碳问题,尤其是在热处理工艺之后。本研究使用打印材料和在不同温度(800 ◦ C、850 ◦ C、900 ◦ C 和 950 ◦ C)下热处理不同时间(30 分钟、60 分钟和 90 分钟)的样品研究了 WAAM 生产的 ER70S-6 钢的脱碳情况。此外,使用 Thermo-Calc 计算软件进行数值模拟,以预测钢在热处理过程中的碳浓度分布。发现脱碳不仅发生在热处理样品中,而且发生在打印部件的表面上(尽管使用氩气进行保护)。发现脱碳深度随着热处理温度或持续时间的增加而增加。在最低温度 800 ◦ C 下仅热处理 30 分钟的部件具有约 200 µ m 的较大脱碳深度。对于相同的 30 分钟加热时间,温度从 150 ◦ C 升至 950 ◦ C,脱碳深度急剧增加 150% 至 500 µ m。这项研究很好地证明了需要进一步研究以控制或最大限度地减少脱碳,从而确保增材制造工程部件的质量和可靠性。
摘要:脱碳是材料表面在高温氧化环境中发生的一种不希望出现的碳损失现象。钢在热处理后的脱碳问题已被广泛研究和报道。然而,到目前为止,还没有关于增材制造零件脱碳的系统研究。电弧增材制造 (WAAM) 是一种生产大型工程零件的高效增材制造工艺。由于 WAAM 生产的零件通常尺寸较大,因此使用真空环境来防止脱碳并不总是可行的。因此,有必要研究 WAAM 生产零件的脱碳问题,尤其是在热处理工艺之后。本研究使用打印材料和在不同温度(800 ◦ C、850 ◦ C、900 ◦ C 和 950 ◦ C)下热处理不同时间(30 分钟、60 分钟和 90 分钟)的样品研究了 WAAM 生产的 ER70S-6 钢的脱碳情况。此外,使用 Thermo-Calc 计算软件进行数值模拟,以预测钢在热处理过程中的碳浓度分布。发现脱碳不仅发生在热处理样品中,而且发生在打印部件的表面上(尽管使用氩气进行保护)。发现脱碳深度随着热处理温度或持续时间的增加而增加。在最低温度 800 ◦ C 下仅热处理 30 分钟的部件具有约 200 µ m 的较大脱碳深度。对于相同的 30 分钟加热时间,温度从 150 ◦ C 升至 950 ◦ C,脱碳深度急剧增加 150% 至 500 µ m。这项研究很好地证明了需要进一步研究以控制或最大限度地减少脱碳,从而确保增材制造工程部件的质量和可靠性。
总连接负载 ≤ 19.6 kVA 预熔保险丝(现场)3 x 25 A 缓熔式压缩空气 • 连接:1/4“ • 额定值:4 - 5 bar 恒定 • 质量:5 µ 过滤 • 消耗量:约 0.16 m 3 /h 取决于产量 出口处的排气 • 连接 1 x ∅ 200 mm • 额定值约。 400 m 3 /h 惰性气体(选配) • 连接:1/2“ 内螺纹 • 额定:4 bar 恒定 • 消耗:12 m 3 /h 取决于产量 运输 运输速度 • 载体运输:0.5 – 2.5 m/min 高于波浪的运输角度 • 载体运输:7° 固定 助焊剂器 雾化器 助焊剂器 调节:9 个阶段的宽度 0.2 – 2.4 连续 预热器 红外预热器额定功率 • 11 x 1.32 = 14.52 kVA 焊料槽 焊料槽加热 3 x 1.0 = 3.0 kW 焊料槽辅助加热 1 x 0.5 = 0.5 kW 焊料槽温度 230° - 280°C 焊料槽容量 250 kg 焊料加热时间约180 分钟 NB 单波 5 排 焊波宽度 300=320mm / 400=420mm 焊槽温度稳定性 ± 1 °C 控制器 控制器 PC / MIS 其他 连续噪音水平 < 65 dB(A) 剩余功耗 1.5 kW 机器尺寸 3.50 x 0.95 x 1.27 m 机器重量 约 550 kg (不含焊料填充) 颜色 灰白色 RAL 9002
6.0引言热对微生物具有致命性,但每个物种都有其自身的耐热性。在诸如巴氏杀菌之类的热破坏过程中,破坏速率是对数,它们的生长速度也是如此。因此,受到热量的细菌以与存在的生物数量成正比杀死。该过程取决于暴露温度和在此温度下完成所需破坏率所需的时间。因此,热计算涉及需要破坏微生物浓度的知识,可接受的微生物浓度可以留在后面(例如,损害生物,但不是病原体),目标微生物的热耐药性(最受欢迎的耐热性生物)以及对销毁目标的温度时间关系所需的温度时间关系。所需的巴氏杀菌处理的程度取决于食物中最耐热酶或微生物的耐热性。例如,牛奶巴氏菌历史上是基于结核分枝杆菌和coxiellaburnetti,但是在识别每种新病原体的情况下,所需的时间温度关系正在不断检查。此过程的热死亡曲线如下所示。这是一个对数过程,这意味着在给定的时间间隔和给定温度下,无论存在的人群如何,细菌种群的相同百分比都将被破坏。巴氏灭菌的热过程通常基于12 d概念,或者该生物体数量减少12日对数周期。例如,如果已知破坏一个对数周期或90%的时间,并且已经确定所需的热还原(例如,12个对数周期),则可以计算所需的时间。如果食物中的微生物数量增加,则处理产品所需的加热时间也将增加,以使种群降低到可接受的水平。
液晶弹性体 (LCE) 是一类由松散交联的聚合物网络组成的形状记忆聚合物,在从向列相到各向同性相的转变过程中表现出可逆的形状变化。[1] 由于它们具有类似肌肉的工作密度和收缩应变 [10–14],并且能够打印或图案化为各种几何形状,它们已越来越广泛地用作软体机器人、[2–4] 可穿戴计算和触觉 [5,6] 和形状变形物质 [7–9] 中的执行器。[15,16] 在大多数机器人和工程应用中,基于 LCE 的执行器使用外部热源进行热刺激,或通过焦耳加热使用集成线或嵌入式渗透粒子网络进行电刺激。先前的研究主要集中在通过焦耳加热来加热 LCE,[6,12,13,17,18] 其中许多应用使用液态金属[19–21] 和波浪电子[12,13,22,23] 作为加热元件。然而,这些方法的一个关键限制是它们依赖于开环加热和被动冷却。这导致温度变化缓慢,并且对控制 LCE 执行器响应速度和曲线的能力有限。具体而言,由于 LCE 的热导率低至 0.3 W m − 1 K − 1[20],导致驱动速度可能很慢;由于热传递是通过对流而不是传导进行的,冷却速度受到极大限制。后者导致冷却时间可能需要激活时间的 5 倍[12,24] 10 倍[13] 甚至 50 倍[25] 才能使 LCE 在环境条件下冷却并恢复到其原始状态。此外,由于温度升高幅度更大,更快的驱动速度需要更长的冷却时间。[25] 为了减少加热时间,人们嵌入了液态金属液滴等软填料来提高这些结构的热导率。[6] 冷却时间的问题仍然存在,加热和冷却时间的差异取决于传导(加热)和对流(冷却)之间传热速率的差异;需要更智能的方法来解决这个问题。最近有人努力通过新的刺激方法来提高 LCE 执行器的速度和控制,[26] 尽管其中大多数方法都会引入显着的机械
产品概述DOW的微电子硅胶粘合剂旨在满足微电子和可选的电子包装行业的关键要求,包括高纯度,耐水性,热和电气稳定性。该产品具有极高的应力松弛和高温稳定性,并且很好地粘附在各种底物材料和组件上,而无需底漆。它也适用于需要具有低模量的材料,无铅焊接温度(260°C)或其他需要高可靠性的应用。该产品是一种易于使用的单组分产品,在热固化反应过程中不会产生副产品。固化的产品表现出极好的电绝缘。 清洁底物表面以清洁底物的表面,并用诸如Dow Corning Brand OS液体,Naphtha,矿物精神或甲基乙基酮(MEK)等溶液清除油性污渍。建议在可能的情况下进行表面的光抛光,以达到由于粘附面积增加而获得稳定的粘附特性。最后,用溶剂擦拭表面有助于去除粘附于标准表面上左侧的残留物。根据贴材和周围组件的特性,其他清洁方法可能有效,因此请确定哪种方法最适合您的个人情况。 基本材料测试有多种类型的底物,底物的表面条件因一种而异,因此不可能提供对粘附条件和粘附强度的一般解释。拉伸粘附试验需要对粘附层的100%内聚力分解,以实现针对特定底物的最高粘附强度。根据确定凝聚力分解,可以确定粘合剂和靶标底物之间的兼容性以及粘附所需的加热时间。另外,可以使用凝聚力的确定来确认表面污染的存在,例如霉菌释放剂,油,油脂和氧化物涂层。 兼容性某些材料,化学物质,交联和增塑剂可能会导致添加粘合剂的固化抑制。典型的固化抑制剂包括有机素,其他有机金属化合物,含有器官蛋白催化剂,硫,多硫化物,多硫酮,其他含硫的材料,不饱和烃塑料塑料化合物和焊料磁通残留物。如果底物或材料可能会导致治疗抑制作用,我们建议您针对您的预期应用进行小规模的一致性测试。如果底物和固化产物之间的界面处有液体或未固定的部分,则其在底物上的使用是不兼容的,并且表示治愈抑制作用。 如果您需要去除DOW电子粘合剂以进行缺陷分析,则可修复性道琼斯水平的流体很有用。有关这些产品的更多信息,请联系Dow。 使用的预防措施:此数据表中不包括使用所需的安全信息。在使用之前,请仔细阅读安全数据表(SD)和容器标签,以获取有关安全使用以及身体和健康危害的信息。您可以通过访问网站Dow.com/ja-jp购买安全数据表(SD)。