摘要:本研究使用系统框架研究了包层系统中使用的玻璃棉 (GW) 和挤塑聚苯乙烯 (XPS) 隔热材料的动力学数据。确定适当的动力学特性(例如指数前因子、活化能和反应级数)对于准确模拟隔热材料的全尺寸防火性能至关重要。本研究的主要目的是提取高层建筑中使用的 XPS 和 GW 隔热材料的热和动力学数据。为了获得这些特性,以四种不同的加热速率进行热重分析 (TGA):5、10、15 和 20 K/min。TGA 结果作为使用无模型和基于模型的方法组合确定动力学特性的基础。本研究的结果有望对定义热解反应步骤和提取此类隔热材料火灾建模的动力学数据大有裨益。这些信息将增进对这些材料在火灾事故中的火灾行为和性能的了解,有助于开发更精确的火灾模型并改进高层建筑覆层系统的消防安全策略。
原材料稻壳(RH)用于制备稻壳灰的制备,从印度尼西亚的普林斯瓦摄政厂周围的一家当地铣削工厂收集。RH首先用自来水彻底洗涤,以去除粘附的土壤和灰尘。然后在阳光下干燥24小时,然后在100 o C下干烤箱10小时。然后通过使用实验室搅拌器进行20分钟的干燥RH进行研磨,以变成细粉。30 g Rh粉末在500 mL 5%柠檬酸溶液中在80 O C下搅拌60分钟。随后将混合物柠檬酸RH(CA-RH)过滤并用去离子水冲洗5次,以从RH中去除柠檬酸,然后在100 o C中在烤箱中干燥10 h。然后用RH和Ca-RH粉末干燥,然后在700 o C中以5 o C/分钟加热速率在700 o C中加热6小时。分别表示为RHA和CA-RHA的灰粉。制备高纯度生物生物无定形SIO 2
摘要:考虑到高水平的热量和曝光型枪手遇到他们的工作活动时,个人保护设备(PPE)对于提高安全性至关重要。相变材料(PCM)被称为能够吸收大量热能的高级材料,并有可能增加保护服装的热性能。在这项工作中,第一次开发了PCM-Vest,并评估了其热性能。采用了三阶段的方法:(1)在实验室的小规模上,评估了不同封装的PCM对多层组装性能的影响; (2)在实验室中,评估了热量和洪水测试的基本要求; (3)在模拟的城市火灾中,研究了三种不同的PCM率(不同的纺织品和设计)的热性能。作为主要结论,PCMS显着影响了多层组件的加热速率,尤其是当使用具有较高潜热的PCM时。在某些情况下,与没有PCM的样品相比,传热指数(HTI)加倍。作为缺点,正如预期的那样,冷却时间增加了。PCM-VEST样品确保了热量和电流测试的要求。通过这项研究,可以突出显示使用PCM来增强常规PPE的热保护的积极影响。
1 新加坡科技研究局(A*STAR)微电子研究所,新加坡 117685 2 巴黎大学材料与现象实验室,法国巴黎 F-75013 3 南洋理工大学电气与电子工程学院,新加坡 639798 在本研究中,我们报告了一种铜填充硅通孔 (TSV) 集成离子阱的设计、制造和操作。TSV 被直接放置在电极下方,作为离子阱和玻璃中介层之间的垂直互连,随着电极数量的增加和复杂性的提高,可实现任意几何设计。TSV 的集成将离子阱的形状因子降低了 80% 以上,将寄生电容从 32±2 pF 最小化到 3±0.2 pF。尽管没有接地屏蔽层,但仍实现了低射频耗散。整个制造过程在 12 英寸晶圆上进行,并与成熟的 CMOS 后端工艺兼容。我们通过加载和激光冷却单个 88 Sr + 离子展示了该阱的基本功能。我们发现,加热速率(轴向频率为 300 kHz 时为 17 量子/毫秒)和寿命(约 30 分钟)与类似尺寸的阱相当。这项工作开创了 TSV 集成离子阱的发展,丰富了可扩展量子计算的工具箱。
研究了生物质与氧化铁的太阳能气化,用于合成气和铁的生产。太阳能和生物质都是很有前途的可再生能源。气化过程将固体碳质原料转化为燃料或化学品。然而,传统工艺需要原料的部分燃烧来供应能量,并且由于燃烧产物的稀释,固有的氧气生产成本高,合成气热值低。使用固体氧化物的化学循环气化是解决这些问题的另一种选择。通过提供集中的太阳能作为高温热源,可以从该过程中生产出更多的合成气,同时能够将太阳能储存成可调度的燃料。这项工作提出探索在高加热速率下在氧化铁上进行太阳能生物质气化,这代表了太阳能反应器中获得的条件。计算了 100 至 1,500 ◦ C 之间气化反应的热力学平衡,并报告了使用专门设计的感应炉在 1,100 ◦ C 下以氧化铁、水或二氧化碳作为氧化剂进行生物质气化的实验结果。固体产物分析表明,氧化铁可以根据氧载体的比例还原为金属铁。这些结果表明,氧化铁是一种有效的太阳能生物质气化材料,可通过一种新颖的绿色冶金工艺同时生产合成气和铁。
摘要 多种增材制造方法已经成熟,并已在多个行业投入常规生产。对于金属加工,通常使用线材或粉末作为原料。线材加工通常用于相对较大的结构构建,而粉末加工通常提供更精确的金属应用。对于粉末床熔合工艺,使用非常细的粉末(通常为 20 µm 至 65 µm),而对于定向能量沉积,粉末的范围在 50 µm 至 160 µm 之间。这种细粉末可能对人类健康构成风险(吸入、皮肤整合)。避免在生产环境中接触粉末可能是一项艰巨的任务,甚至无法避免。因此,开发了一种替代工艺,该工艺不是以自由粉末颗粒的形式提供粉末,而是以粉末片的形式提供粉末。为了实现颗粒之间必要的粘合,使用粘合剂。为了了解粘合剂在激光加工粉末片过程中的影响,产生了单脉冲和线处理并用高速成像记录下来。记录显示了粘合剂的蒸发和相关的粉末颗粒的喷出。在较低的能量输入下,粘合剂蒸发导致较少的飞溅,这表明在低加热速率下加热粘合剂会对粉末颗粒产生较小的压力。
上下文。涡流流。有人提出,涡旋对于将能量和等离子体引导到电晕起起着重要作用,但是在现实的设置中尚未直接研究涡流流对电晕的影响。目标。我们使用冠状环的高分辨率模拟来研究涡流加热的作用。涡流不是人工驱动的,而是由磁反看自s谐的。方法。我们使用Muram代码执行3D电阻MHD模拟。在笛卡尔几何形状中研究一个孤立的冠状环使我们能够解决环内部的结构。我们进行了统计分析,以确定从色球到电晕的高度的涡度性能。结果。我们发现,注入回路的能量是由强磁元素内的内部相干运动产生的。在涡流管中通过涡旋管中的涡流引导,产生的po弹孔的显着部分被引导,形成光球和电晕之间的磁连接。涡旋可以形成连续的结构,达到冠状高度,但是在电晕本身中,涡流管变形,并最终随着高度增加而失去身份。涡流显示出向上向上的po弹孔和色球和电晕中的加热速率,但随着高度的增加,它们的效应变得不太明显。结论。虽然涡旋在色球环和低电晕中的能量传输和结构中起着重要作用,但它们在大气中的重要性较高,因为漩涡与环境的区别不太区分。到达电晕的涡流管与冠状发射显示复杂的关系。
背景。在观测和模拟中,人们在光球层、色球层和低日冕中发现了涡流。有人认为涡流在将能量和等离子体引入日冕方面发挥着重要作用。然而,涡流对日冕的影响尚未在现实环境中直接研究过。目的。我们使用高分辨率日冕环模拟研究涡流对日冕加热的作用。涡流不是人为驱动的,而是由磁对流自洽产生的。方法。我们使用 MURaM 代码执行了 3D 电阻(磁流体动力学)MHD 模拟。在笛卡尔几何中研究孤立的日冕环使我们能够解析环内部的结构。我们进行了统计分析,以确定涡流特性与色球层到日冕高度的关系。结果。我们发现,注入环路的能量是由强磁性元素内部相干运动产生的。由此产生的坡印廷通量的很大一部分通过涡流管穿过色球层,从而在光球层和日冕之间形成磁连接。涡流可以形成连续的结构,达到日冕的高度,但在日冕本身中,涡流管会变形,并最终随着高度的增加而失去其特性。涡流在色球层和日冕中都显示出向上指向的坡印廷通量和加热速率增加,但随着高度的增加,其影响变得不那么明显。结论。虽然涡流在色球层和低日冕中的能量传输和结构中起着重要作用,但它们在更高大气层中的重要性尚不清楚,因为漩涡与周围环境的区分度较差。到达日冕的涡流管揭示了与日冕发射的复杂关系。
同时将不同的功能分配给结构元素仍然具有挑战性。在这项研究中,首次开发了一种适用的多功能平面编织复合材料,具有增强,自感和自加热的能力。在此路线中,使用了三种商业织物,包括棉花,棉/聚酰胺和聚酯。首先对织物进行化学处理,然后使用具有不同浓度和层的丝网印刷涂层碳纳米材料的聚合物导电糊。然后将样品覆盖并用热塑性聚氨酯聚合物密封,以避免Envi Ronmental因子影响。智能平面复合材料(SPC)也被用作水泥标本的加固。还评估了样品的电导率和焦耳加热能力。使用各种测试研究了SPC的微观结构。使用不同的载荷模式评估了用不同SPC的胶结复合材料的机械性和自感应性能。结果显示,加热速率为0.44°C/ s,焦耳加热功率为0.7 w/°C,最高温度为44°C,这证明了胶结材料的适当加热能力,该能力是由SPC增强的。电阻率变化与应变值之间的很大相关性表明该复合材料在不同应用中应变感应中具有很高的电位。SPC还改善了试样的裂缝后行为及其弯曲强度和失败应变,分别提高了约50%和118%。这项研究的结果在多功能编织的复合开发中占据了明亮的视野,在民用基础设施中使用了不同的应用,这是智能城市进步的关键步骤。
电场和磁场为无机材料的合成、加工和微观结构调整提供了额外的自由度。[1] 与传统烧结技术相比,电流辅助烧结 (ECAS) 技术因显着增强和加速了烧结动力学而具有极好的前景,在先进材料的加工中非常有前景。[2 – 7] 从 100 多年前的第一项专利开始,如今专利和文献中描述了 50 多种不同 ECAS 技术原理。[3] 通常,可通过以下方式实现高加热速率和低停留时间的短期烧结:1) 在导电工具中间接加热非导电粉末,通过焦耳效应加热并将热量传导给粉末; 2) 通过感应或热辐射间接加热非导电粉末,直至达到起始温度,此时电流开始流过样品,因此可以直接加热;3) 通过焦耳效应直接将能量耗散在样品内,直接加热导电粉末;4) 通过样品突然释放存储在电容器中的能量,超快速直接加热导电粉末。粉末和工具材料的电导率主要决定样品是直接加热还是间接加热。金属、合金和特殊陶瓷材料,如 TiC、TiN、Ti(C,N)、MAX 相(M = 过渡金属,A = A 组元素,X = C 或 N)、WC、TiB2 和 ZrB2,作为超高温陶瓷 (UHTC),可以在场辅助烧结技术/放电等离子烧结 (FAST/SPS) 模式下直接加热,因为它们的电导率比通常用作工具材料的石墨的电导率高几个数量级。反之亦然,大多数氧化物(Al2O3、ZrO2、YSZ、MgO、CeO2、掺杂钆的二氧化铈 [GDC] 等)和其他陶瓷,如 BN、Si3N4、SiC 和 B4C,由于其低电导率,则间接加热。通过施加单轴压力可以进一步提高 ECAS 技术的效率,这还可以支持烧结动力学,从而能够降低烧结温度