摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周内 12 个手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周内 12 个手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
生物传感器技术有可能彻底改变水产养殖行业,但是选择标记方法,操作模式(独立系统与无线系统)和遥测技术最终取决于生活物种,生活阶段和研究问题。尤其是Aefishbit是一种由三轴加速度计,微处理器,电池和RFID标签组成的小型独立设备,该设备设计为外部连接到OperCulum。这个独特的位置用于提供通过板载算法处理的活动模式(X和Y轴信号)和呼吸频率(Z轴信号)的同时测量。最初证明了在游泳隧道呼吸仪中锻炼鱼的有效性,并用作可靠的工具,用于在此处测试在自由降低的吉尔特黑头泡沫中单个监测全体生物特征的人,在此处测试了面对广泛的生物抗性和非生物压力的鱼类。还评估了标记方法的影响,基于使用具有柔性热乙烯环的Monel穿孔鱼标记,并且在评估后10天发现了10天后发现10天的刺激性损害,operculum损害或gill板性损害的迹象。该设备的自主权是连续记录的6小时,并在实验期间(2 - 8天)定期进行2分钟窗口的可重新编程滞后时间和2分钟窗口的记录时间表。这种过程强调了禁食体重减轻和孔呼吸呼吸之间的负线性相关性,成为呼吸频率是基础代谢率的可靠指标。生物传感信号还强调了在一单年和三年的鱼类中进行比较时,年轻鱼的呼吸率更高和呼吸率提高。此外,AEFISHBIT测量结果证明了严重缺氧期间呼吸频率的普遍增加(2-3 ppm),但是被归类为主动鱼类的个体也具有增加氧气可用性环境中SUP移植逃生反应的体育活动增加。同样,我们还观察到体育活动的总体增加,而储罐空间的可用性下降,这可以有助于建立养殖鱼类的福利标准更严格。最后,呼吸频率的降低是用粘液粘液肠肠肠肠肠球菌在实验感染的鱼类中的寄生肠炎进展的一致诊断标记。总的来说,这项工作构成了使用生物传感器技术作为实验室规模上养殖鱼类的单个全生物行为分析的可靠工具的概念证明,这有助于提高水产养殖行业的动物福利和生产力。
- 商店关闭:在COVID -19期间,该小组的销售量和通信转移到数字和移动渠道,分支机构较低。作为其审查的一部分,该集团已经确定了其网络中162家商店,该商店将在未来几个月内关闭。结果,该小组将在第四季度接受2500万英镑的重组费用。- 生活更多的维珍目标操作模型变化:该小组的生活更加处女的工作模式旨在使同事围绕工作模式和位置提供更大的灵活性,以寻求支持同事以实现更好的工作与生活的平衡,并提高幸福感和生产力。这些变化还意味着该小组的办公空间需求较低,基础架构和办公室中心重新使用以适合新的工作方式。应用估值调整并包括其他操作模型更改后,该组将在第四季度征收2000万英镑的重组费用。- 更大的自动化:该小组现在旨在通过移动基于云的基础架构来进一步简化IT遗产,该基础架构将简化和自动化关键流程。这些变化将进一步使敏捷交付,增加变化的速度并随着时间的推移提供效率。今天宣布的步骤是英国Virgin Money数字策略加速的第一阶段,该阶段将推动进一步的生产率提高,并增强持续投资,进一步的数字化以及及时的更高的成本效率。
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未经同行评审证明)预印版本的版权所有者,此版本发布于2021年9月28日。 https://doi.org/10.1101/2021.09.18.21263773 doi:medrxiv preprint
抽象运动模式分析使用多种方法来识别由可穿戴传感器,视频 - 摄像头和全球导航卫星系统记录的体育活动。本文使用来自心率监视器的数据,导航系统记录的加速度学信号和手机传感器进行了运动分析。在一个丘陵地区记录了实际的骑自行车实验,其路线约为12公里。信号,以发现地理和生理数据之间的关系,包括检测心率恢复延迟作为身体和神经状况的指标。所提出的算法利用了信号分析的方法和人体运动特征的提取方法,这些方法用于研究心率,路线效力,循环速度和循环节奏的对应关系,包括时间和频域。数据处理包括使用Kohonen网络和对运动模式进行分类的两层软计算模型的使用。获得的结果指向平均时间为22.7 s,在循环传感器检测到重负荷后的心率下降50%。进一步的结果指出,人体磨损加速度计记录的信号与从GNSSS数据评估的速度之间的信号之间的对应关系。基于加速度计量数据的下坡和上坡循环的分类分别为培训和测试数据集的精度分别为93.9%和95.0%。这些技术也可以应用于康复和神经系统疾病诊断中的广泛应用。提出的方法表明,可穿戴的传感器和人工智能方法构成了有效的工具,可在不同的运动活动中评估生理状况,包括骑自行车,跑步或滑雪时进行运动监测。
摘要:我们报告了一种新的多GPU从头算,hartree- fock/密度功能理论实现将整体化为开源量子相互作用计算内核(快速)程序。详细介绍了电子排斥积分的负载平衡算法和多个GPU之间的交换相关性。进行了多达四个GPU节点进行的基准测试研究,每个节点包含四个NVIDIA V100-SXM2型GPU表明,我们的实力能够实现出色的载荷平衡和高平行的效率。对于代表性的培养基到大蛋白/有机分子系统,观察到的平行官方率在Kohn- -假基质形成中保持在82%以上,而对于核梯度计算,则保持高于90%。在所有经过测试的情况下,NVIDIA A100,P100和K80平台上的加速度也已经实现了高于68%的平行官方,这为大规模的初始电子结构计算铺平了道路。
上下文。密度不均匀性在空间和天体物理等离子体中无处不在,尤其是在不同培养基之间的接触边界处。它们通常对应于在各种空间和时间尺度上表现出强大动态的区域。的确,密度不均匀性是一种可以驱动各种不稳定性的自由能来源,例如低杂交饮用的不稳定性,进而将能量通过波颗粒相互作用转移到颗粒并最终加热等离子体。目标。我们的研究旨在量化低杂交饮用不稳定的效率,以加速或热电子与环境磁场平行。方法。我们结合了两种互补方法:全运动和准线性模型。结果。我们报告了由低杂交饮用不稳定的3D-3V全动作数值模拟的发展驱动的电子加速度的自洽证据。观察到的加速度的效率无法通过标准的准线性理论来解释。因此,我们开发了一种扩展的准线性模型,能够在长时间尺度上定量预测低杂交闪光与电子之间的相互作用,现在与全动光模拟结果一致。最后,我们将此新的,扩展的准线性模型应用于特定的不均匀空间等离子体边界,即汞的磁化。此外,我们讨论了我们对电子加速度的定量预测,以支持未来的Bepicolombo观测值。
近年来,Cansats已成为模拟卫星比赛中的流行选择。在Cansat con-constss中,Arliss项目是使用火箭发射Cansat进入天空的项目。arliss提供了发射罐头的火箭,该火箭的高度约为〜4,000 m,然后将流动器放到降落伞的地面上。但是,几个团队的流浪者无法承受发射时应用的大加速度,这会损坏并使其无效。发射期间适用于火箭的加速度以前由多个团队衡量;但是,由于Cansat是一个小型嵌入式设备,因此无法使用具有较大测量范围和高采样频率的加速度传感器。在这项研究中,我们测量了从发射开始应用于流动站的效应,直到使用具有更广泛测量范围的加速度传感器在地面上掉落,并通过比以前更高的采样频率获取数据。发现加速度比在发射火箭时的常规测量中大于速度,并掉落到地面。此外,提供了可以承受这些影响,进行准确的测量并在Arliss中不断裂的情况下操作的漫游者结构的技术细节的描述。
摘要:MEMS传感器的不断开发和微型化总是为它们在与健康相关和医疗应用中使用的新可能性提供了新的可能性。MEMS设备在弹性系统中的应用允许更快的诊断,并显着促进医务人员的工作。MEMS加速度计构成此类系统的重要组成部分,尤其是那些用于监测失衡障碍患者的系统。此类传感器的正确设计对于收集有关患者运动的数据和确保整个系统的整体性能至关重要。本文介绍了专门用于跟踪患者运动的设备的三轴加速度计的设计和测量。它的主要重点是传感器的表征,比较不同的设计并评估包装和读取电路集成对传感器操作的影响。广泛的测试和测量结果确保了设计的加速度计正常工作,并允许在灵敏度/稳定性方面识别最佳设计。此外,仅当读数电路与MEMS传感器集成在相同的包装中时,提出的传感器作为应用加速度的函数的响应才能证明非常好的线性。