引入编码电压门控钠(Na V)通道的基因中的致病变异在患有早发作,发育和癫痫性脑病(DEE)的个体中经常发现,以及相关的神经发育障碍(NDDS)(NDDS)(1,2)。确定Na V通道变体的功能后果可以提供有关病理生理机制的信息,并可能指导精确的治疗方法(3,4)。使用正确的分子环境(例如,物种起源,剪接同工型)来研究离子通道变体的功能,对于准确的评估至关重要。编码Na V 1.6的SCN8A中的致病变异已成为神经衰变疾病的重要原因,在婴儿期间典型发作(5)。最早发现的DEE与具有功能获得性能的非截断变体(例如增强的持续电流,激活的电压依赖性改变)。随后,在患有临床严重程度较大的表情的个体中发现了SCN8A变体,而没有癫痫发作(6)。在成熟的神经元中,Na V 1.6位于轴突初始段,该通道用于发起动作电位(7)。基因在早期发育过程中经历了特定的替代剪接事件,包括框架内包含2个不同版本的外显子5中的1个,该版本编码了第一个电压 - 感应域的一部分(8)。重要的是,国家生物技术信息中心(NCBI)指定为变体1(NM_014191)的SCN8A参考编码顺序(NM_014191)包括外显子5N,而包括外显子5A的序列为外显子5N在胚胎发育期间和出生后立即占主导地位,但大约1岁的转录本包含替代外显子5A超过含有5N的外显子,并且5A同工型在春季春季占主导地位(9)。
视觉始于视网膜,该视网膜检测到环境中的光子,并传达有关大脑视觉场景的这些信号。视网膜神经节细胞中的视神经中继带有称为动作电位或尖峰的电信号到大脑的信息。视力中的一个关键挑战是,大脑必须解码约100万个视网膜神经节细胞的尖峰活动,以预测哪种视觉场景引起了视网膜尖峰。需要准确的解码才能正确地感知其视觉环境并采取适当的响应。在视觉中的另一个挑战是,在云彩的夜晚和阳光明媚的日子之间,环境中的平均光子数量变化了万亿倍。视网膜必须与这种广泛的光强度对抗,以成功地将视觉信息传输到大脑。有趣的是,视网膜神经节细胞峰值中信号和噪声的性质在这一光范围内发生了变化,从而使视觉信息如何由视网膜编码并由大脑读取,这给人带来了丰富的问题。我通过记录对视觉刺激的视网膜响应,从夜间到白天的光强度不等。i用大型多电极阵列进行了这些记录,它们具有500个电极,以同时记录数百个视网膜神经节细胞的尖峰活性。i接下来使用统计建模来描述视网膜反应并解码视觉刺激,询问光线条件中的变化(如夜间到夜间的变化)如何影响解码性能。我的结果阐明了视网膜神经节细胞尖峰的哪些方面对于大脑至关重要,即从星光到阳光读取视觉信息。这项工作也对建造脑机界面(例如假肢视网膜)具有影响,使大脑能够正确解释其从不同光条件上从假肢中获得的信号
有效的蜂窝通信对于大脑调节肌肉收缩,记忆形成和回忆,决策和任务执行等多种功能至关重要。通过电气和化学信使(包括电压门控通道和神经递质)的快速信号传导来促进这种通信。这些使者通过传播动作电位和中介突触传播来引起广泛的反应。钙涌入和外排对于释放神经递质和调节突触传播至关重要。与氧化磷酸化有关的线粒体和能量产生过程也与内质网相互作用,以存储和调节细胞质钙水平。不同细胞类型中线粒体的数量,形态和分布根据能量需求而变化。线粒体损伤会导致过量的活性氧(ROS)产生。mitophagy是一个选择性过程,它通过自噬体 - 散糖体融合靶向并降解损坏的线粒体。线粒体中的缺陷会导致ROS和细胞死亡的积累。许多研究试图表征神经退行性疾病中线粒体功能障碍与钙失调之间的关系,例如阿尔茨海默氏病,帕金森氏病,亨廷顿氏病,黑肿瘤疾病,肌萎缩性侧面硬化症,脊髓灰质球脑性脑脑性无动脉症,染色。减少线粒体损伤和积累的介入策略可以作为治疗目标,但是需要进一步的研究来揭示这一潜力。本综述提供了与线粒体在各种神经元细胞中有关的钙信号传导的概述。它严格检查了最新发现,探讨了线粒体功能障碍可能在多种神经退行性疾病和衰老中起的潜在作用。此外,评论还确定了知识中现有的差距,以指导未来研究的方向。
髓磷脂是一种由中枢神经系统(CNS)中的少突胶质细胞的延伸质膜形成的多层结构(Aggarwal等,2011; Baumann and Pham-Dinh,2001; Stadelmann等,2019)。它会围绕轴突充分包裹,从而产生主要由脂质(70-85%)和蛋白质(15–30%)组成的鞘,它们共同提供电绝缘。脂质成分,包括胆固醇,磷脂和糖脂,使髓磷脂具有绝缘性,而髓磷脂碱性蛋白(MBP)和蛋白质脂质蛋白(PLP)(PLP)(PLP)(PLP)稳定并稳定并压缩层。PLP还将胆固醇分流到髓磷酸室(Werner等,2013)。髓鞘鞘分为节间,它们是沿轴突髓磷脂紧密压实的区域。这些由富含电压门控离子通道的轴突的Ranvier的节点分开。这个结构性组织允许盐分传导,其中仅在节点上仅重新再生动作电位,同时降低了神经元活性的能量需求,从而显着提高了信号传播速度(Aggarwal等,2011; Baumann and Pham-Dinh,2001; Stadelmann et al。,2019年)。髓磷脂在确保沿轴突的快速有效信号传递来确保动作电位的精确同步方面起着关键作用。这种同步整合了各种兴奋性和抑制性输入,从而实现了神经元通信的准确时机。通过保持动作电位的速度和保真度,髓磷脂支持复杂的神经回路的协调,这对于适当的神经网络功能和过程(例如感觉知觉,运动控制和认知)至关重要。髓磷脂结构的小改变可以促进或破坏动作电位的同步,从而影响神经回路功能(Bonetto等,2021; Monje,2018; Xin and Chan,2020)。
图1 AAV-MIR SOD1靶向星形胶质细胞的靶向神经肌肉功能。神经肌肉功能。(a)纵向实验的模式,指示分析时间点。(b)记录在三头肌中记录的诱发复合肌肉动作电位(CMAP)的幅度。请注意,在第45天至66天之间,未处理和AAV-MIR CTRL注射SOD1 G93A小鼠的CMAP振幅的迅速下降。从第73天开始,AAV-MIR SOD1处理组中的CMAP值进行了逐步拯救。(c)网格测试用于评估四肢的强度。请注意,从第86天开始,未处理和AAV-MIR CTRL注射的SOD1 G93A小鼠的分数显着下降。在AAV-MIR SOD1处理的小鼠中观察到肌肉强度的显着拯救。B和C的统计分析:双向ANOVA(X组时间)重复测量通过Bonferroni事后检验; *** p <.001。 (D)在Rotarod测试中测量电动机协调。 请注意,从第75天开始,ALS小鼠的性能逐渐丧失。 AAV-MIR SOD1从第117天开始引起电动机协调的晚期改进。 统计分析:与Newman的单向方差分析 - KEULS事后测试; * p <.05,** p <.01。 数据代表平均值±SEM。 n =每组12只小鼠B和C的统计分析:双向ANOVA(X组时间)重复测量通过Bonferroni事后检验; *** p <.001。(D)在Rotarod测试中测量电动机协调。请注意,从第75天开始,ALS小鼠的性能逐渐丧失。AAV-MIR SOD1从第117天开始引起电动机协调的晚期改进。统计分析:与Newman的单向方差分析 - KEULS事后测试; * p <.05,** p <.01。数据代表平均值±SEM。n =每组12只小鼠
当伯格(Berger)在1929年报道了人类脑浪潮发现时,大众媒体的感觉将其报告为“思想电气记录”,生理学家花了五年时间将其视为“思想的关键记录”,而日本学会认为它是“关键”和阴暗的事物。它在这一特殊特征的开头说:“如果进行测量以捕获生物学现象为生物学信号,则有必要考虑获得的测量值反映的结果反映了什么,并且不反映生物学现象,以及所获得的数据是否与测量目的相匹配。”据认为,伯杰(Berger)从一对放置在头皮上的电极中记录了电活动,精确地记录了放置在头皮上的电极。从我们当前的角度来看,波形是α波本身,表明上蜡和减弱。但是,当时的神经生理学家认为这种缓慢的振动反映了神经系统中的电活动。 在神经系统的电活动是未知的时候,这是不可避免的,除了神经纤维产生的动作电位。此外,媒体以与伪科学设备相同的水平将脑波视为“思维电记录”,该设备可以衡量当时流行的人格和心理能力,也被认为是生理学家与他们距离的距离的原因。 演讲五年后,著名的生理学家和诺贝尔奖获奖者阿德里安(Adrian)和马修斯(Matthews)发表了夺回论文,并在生理学协会进行了公开实验,而伯格(Berger)的“ eeg”被认为是一种反映大脑活动的电动活动,而不是1)。这可能是因为Adrian发现了与水生神经节细胞中类似于α波相似的缓慢的电势波动3)和Goldfish脑干4),实际上观察到眼睛张开和计算任务中α阻断的外观,使他坚信它是脑源性的电活动。 这样,在脑电图被公认为反映大脑活动的电活动之后,它已用于研究癫痫和意识受损(睡眠)。但是,直到今天,他还没有为阐明精神疾病的病理做出太多贡献,精神病学教授伯杰从一开始就一直期望这一疾病。
目的 颅内人脑记录通常使用无法区分单个神经元动作电位的记录系统。在这种情况下,无法通过功能电路内的位置来识别单个神经元。本文展示了在 CA3 和 CA1 细胞场内单独记录的海马神经元的定位验证。方法 在 23 名接受侵入性监测以识别癫痫发作灶的人类患者体内植入了大-微深层电极。通过位于海马内的大-微深层电极记录的细胞外动作电位波形来分离和识别单个神经元。使用 3T MRI 扫描对 23 名植入患者以及 46 名正常(即非癫痫)患者和 26 名有癫痫病史但没有深层电极放置史的患者的海马进行形态测量调查,从而提供海马沿典型植入轨迹的平均尺寸。根据记录电极位置、深部电极的立体定位与形态测量调查的对比以及术后 MRI,暂时确定其在 CA3 和 CA1 细胞场内的定位。根据波形和放电频率特征,将细胞选为候选 CA3 和 CA1 主要神经元,并通过功能连接测量确认其位于 CA3 至 CA1 神经投射通路内。结果互相关分析证实,近 80% 的假定 CA3 至 CA1 细胞对表现出与细胞间前馈连接相符的正相关,而只有 2.6% 表现出反馈(逆)连接。即使排除了同步和长延迟相关性,在总共 4070 对中的 1071 对(26%)中发现了 CA3-CA1 对之间的前馈相关性,这与已发表的动物研究中报告的 20%–25% 前馈 CA3-CA1 相关性相比更为有利。结论 本研究证明了在活体中记录人类大脑特定区域和子域神经元的能力。随着脑机接口和神经假体研究的不断扩展,有必要能够识别感兴趣的神经回路内的记录和刺激位点。
2024 年 6 月 25 日 摘要 目标:使用简化的数学方法定量探索单个皮质神经元细胞体之间的跨膜电位差异如何产生脑电图 (EEG) 的皮肤表面电位,以及如何在院前环境中使用 EEG 检测缺血性中风。方法:从静电学、解剖学和生理学的基本原理出发,可以表征单个皮质神经元细胞体激活过程中产生的表观偶极子的强度。皮质神经元中的瞬时偶极子强度取决于其细胞体的大小和表面积、其电容以及细胞体上出现的跨膜电位差异。EEG 的总电位是许多单个偶极子强度、方向和与电极的距离的函数。皮质神经元活动和放电率降低模拟了急性缺血对一个或两个 EEG 电极下组织的影响。结果:如果在任何时刻,25 个细胞体在最靠近皮肤表面电极的 1 cm 3 体积的灰质中随机活动,则可以模拟临床上真实的 EEG 记录。仅在一个 EEG 电极下完全停止神经活动会导致总体 EEG 信号幅度和频率略有下降。但是,在两个 EEG 电极下,神经活动减少到正常值的 5% 到 50% 之间,会导致 EEG 幅度与正常值相比下降 30% 到 70%。结论:这种电活动变化可用于快速早期检测急性缺血性中风,可能加快溶栓或再灌注治疗,前提是两个电极都位于缺血区域,并将信号与头部另一侧的正常信号进行比较。关键词 : 动作电位、救护车、诊断、偶极子、早期干预、脑电图、缺氧、发病率、神经元、护理人员、即时诊断系统、院前诊断、快速、再灌注、血栓溶解、治疗时间、TPA、远程医疗
如果没有学习,我们就会局限于一组预先编程的行为。虽然这对苍蝇 1 来说可能是可以接受的,但它并不能为人类熟悉的自适应或智能行为提供基础。因此,学习是大脑运作的重要组成部分之一。然而,学习需要时间。因此,自适应行为的关键是学会系统地概括;也就是说,学会可以灵活地重新组合以理解你面前的任何世界的知识。这篇论文试图在两个问题上取得进展——大脑网络如何学习,以及允许概括的知识表征背后的原理是什么。随着科学的工业化,二十世纪结出了硕果,人们对神经元、突触、神经递质、静息电位、动作电位、网络等的了解越来越详细(1-4)。尽管我们已经对其中许多微观过程有了相当详细的了解,并且由于哲学、实验心理学以及行为和认知神经科学 (5–9) 而对智能有了高层次的理解,但是在这些粒度级别之间仍然存在巨大的理解鸿沟。本论文致力于通过提供可转化为低级过程的高级计算框架来弥合这一差距。任何高级大脑框架的核心都必须是成功的行为,因为这是大脑的作用。类似地,神经元对于低级理解至关重要,因为人们认为大脑功能的基础是通过加权连接介导的神经元之间的信息传递。不同的权重导致不同的功能。因此,学习适当的权重配置是大脑面临的基本问题。这种学习有两个方面 - 第一个是如何,第二个是什么。如何是确定这些突触连接更新的学习算法,而什么是反映世界如何运作的神经表征。在这一脉络中,本论文研究了 1) 生物神经网络中学习的算法实现,以及 2) 任务泛化的神经表征的计算框架。这两个研究方向都与贝叶斯思想紧密相连,并且这两项工作都弥合了高级和低级理解之间以及大脑和机器之间的差距。
背景:神经外接口是侵入性最小的周围神经接口之一,因为它们位于神经外部。然而,与侵入性更强的接口相比,这些电极可能存在选择性和灵敏度较低的问题,因为目标神经纤维与电极的距离更远。新方法:通过微加工技术实现了溶解和吸引接口 (LACE),并旨在提高选择性和灵敏度,同时保持接口格式。它的工程设计在之前的工作中有所描述。LACE 是一种集成了微电极和微流体通道的混合接口。最终目标是通过微通道局部输送 (1) 溶解剂以去除将电极与神经纤维分开的结缔组织,和 (2) 神经营养因子以促进暴露的神经纤维轴突发芽到嵌入电极的微流体通道中,从而提高束状选择性和灵敏度。在这里,我们重点展示微流体和微电极在急性准备中的体内功能,其中我们评估局部去除结缔组织并用微通道嵌入微电极记录和刺激大鼠坐骨神经神经活动的能力。与现有方法的比较:虽然神经外接口优先考虑神经健康,而神经内接口优先考虑功能,但 LACE 代表了一种新的神经外方法,它可能在两个目标上都表现出色。结果:手术植入显示经过小心和最少的操作后,LACE 功能得以保留。体内电评估表明放置在微流体通道内的微电极能够成功刺激和记录来自大鼠坐骨神经的复合动作电位。此外,通过微通道输注胶原酶后,富含胶原的神经外膜被局部去除,并通过显微镜确认。结论:在对大鼠坐骨神经进行的急性实验中证明了使用集成微电极和微流体的cuffi来刺激、记录和输送药物以局部溶解神经外膜层的可行性。
