电池保修LFP电池应至少需要7年。在引用率中应包括7年后一次更换电池的费用。必须在7年后替换整个电池系统,直到O&M期间完成为止。更换电池的规范应相同或更高。成功投标者应在项目调试后为已安装的电池系统提交发票。在发布85%的项目成本之前,应提供同一发票金额的额外绩效银行担保(PBG)。额外PBG的有效性应为10年。更换电池系统后,此额外的PBG将发布。8 10工作范围和技术规格,保修和维护,第57页
摘要- 谱形式因子 (SFF) 表征能量特征值的统计,是多体量子混沌的关键诊断。此外,可以定义部分谱形式因子 (pSFF),它们指的是多体系统的子系统。它们为多体系统的能量本征态统计提供了独特的见解。我们提出了一种协议,允许在随机测量框架内测量量子多体自旋模型中的 SFF 和 pSFF。我们的协议提供了一个统一的测试平台,用于探测封闭量子系统中的多体量子混沌行为、热化和多体定位。此外,我们介绍了该协议在采用局部随机旋转和测量的捕获离子量子模拟器上的实现。
课程与教学回顾:我们的课程要求和课程设置符合明尼苏达州标准、共同核心 ELA 和国家共同核心艺术标准。学生每季度上课可获得一个学分。学生每季度每天上四门课。如果学生全勤并成功完成每门课程,他们将获得 64 个学分;PiM 艺术高中要求学生获得 56 个学分才能毕业。在这些学分中,学生在语言艺术和社会研究方面获得八个或更多学分。学生在数学和科学方面获得六个或更多学分。学生可以通过各种舞蹈课程获得所需的体育学分。要获得艺术认可 - 学生必须在其专业中获得 18 个或更多学分,包括核心必修课和选修课。
○ 人工智能补充人类顾问,处理日常任务并提供数据驱动的见解 ○ 人类顾问带来同理心、复杂问题解决能力和道德判断,这是人工智能无法复制的 ○ 未来很可能是一种协作模式,其中人工智能增强了人类顾问的能力
我们介绍了Physgaussian,这是一种新方法,将物理扎根的牛顿动力学无缝地集成在3D高斯人中,以实现高质量的新型运动合成。采用自定义材料方法(MPM),我们的方法丰富了3D高斯内核,具有物理意义的运动学变形和机械应力属性,所有这些都符合连续力学原理。我们方法的定义特征是物理模拟和vi-sual渲染之间的无缝集成:这两个组件都利用相同的3D gaus-sian内核作为离散表示。这否定了三角/四面体缝合,行进的立方体,“笼子网格”或任何其他几何嵌入的必要性,突出了“您所看到的就是您所见的原则(WS 2)。”我们的方法证明了各种材料(包括弹性实体,塑料金属,非牛顿液和颗粒状材料)的特殊效果,展示了其在创建具有新颖观点和运动的Di-Verse视觉内容方面的强大能力。我们的项目页面是:https://xpandora.github。io/ physgaussian/。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
配体对于调整溶液中金属复合物的反应性至关重要。1,2不稳定或半比例的配体可能发挥作用,以增强3 - 5个直接,6 - 8或抑制9金属中心的反应性,从而影响更多的效率和更多的选择性催化。研究不稳定配体的物种和交换动力学对于了解金属配合物在溶液中的反应至关重要。通常通过紫外可见或核磁共振(NMR)光谱法监测配体与金属中心的结合和交换。10 - 14这些方法提供了有关复合物配体交换和旋转状态的信息。但是,他们通常仅报告溶液中的主要物种,并且不能有效地跟踪低丰富的复合物。此外,NMR对顺磁复合物的分析需要复杂的方法。15相反,质谱法(MS)与电喷雾电离(ESI)相结合,具有高灵敏度,并使得可以监测次要物种。它用于研究与不稳定配体的金属配合物的形态,无论金属的性质或自旋状态如何,或遵循由金属 - 有机络合物催化的反应。16 - 23
Skyrmions是表现出类似粒子的特性的纳米到微米尺寸的磁旋转,可以通过电流有效地移动。这些属性使Skyrmions成为新型数据存储或计算机的绝佳系统。但是,为了优化此类设备,通常在计算上太昂贵了,无法模拟Skyrmions的复杂内部结构。