首先开发了各种 PTES 和太阳能-PTES 概念的简单热力学模型。结果用于确定哪些系统最有前景并值得进一步研究。然后建立了更详细的技术经济模型。技术模型捕获了系统中每个组件的性能。特别是,需要热交换器的质量表示,并且模型已根据从文献中获取的实验结果成功验证。对每个组件的非设计性能进行了建模,从而能够评估可变部分负载和环境温度下的 PTES 和太阳能-PTES 性能。通过从文献中获取每个组件的成本相关性来估计系统资本成本和平准化存储成本 (LCOS)。每个组件都使用了几个相关性,这使得能够使用蒙特卡罗技术来计算可能的成本及其不确定性。该分析强调了热交换器设计对系统性能的重要性,并且需要高效率值(超过 90%)才能实现合理的往返效率。研究发现,这种高效率还可以最大限度地降低终身成本 (LCOS)。
可再生能源的发电量会因一天和一年中的天气条件波动而变化。因此,发电量并不总是能跟上能源需求。为了提高可再生能源工厂的稳定性和可靠性,开发高效和可持续的能源存储系统非常重要。5 最有前途的存储技术之一是泵送热能存储 (PTES) 概念。PTES 系统由热泵和动力循环组成,热泵将可再生能源的电力输入存储为热能,动力循环将其再次转换为电力输出。蒸汽压缩或布雷顿循环用作热泵,而布雷顿或有机朗肯循环 (ORC) 则被选为动力循环。热能可以存储为显热,也可以使用相变材料 (PCM) 或通过化学反应机制存储为潜热。6
2300Na 钠分析仪为微电子纯水/超纯水和动力循环化学监测提供高度可靠的在线钠测量。该分析仪可保证水的纯度,并提前警告可能发生的离子突破 - 最大限度地减少发电厂涡轮机腐蚀的影响以及半导体工艺的中断。
摘要:已有多项研究工作调查了可再生电力直接供应电解,特别是来自光伏 (PV) 和风力发电机 (WG) 系统的电力。基于太阳能的氢气 (H 2 ) 生产被认为是可持续能源的最新解决方案。本文介绍了基于太阳能的氢气生产的不同技术,以研究它们的优点和缺点。基于可再生能源的水分解技术生产氢气可以通过不同的过程实现(光化学系统;光催化系统、光电解系统、生物光解系统、热解系统、热化学循环、蒸汽电解、混合过程和聚光太阳能系统)。本研究对基于 PV 和 WG 系统的不同氢气生产方法进行了比较。本文还介绍并讨论了不同类型的电解槽的比较研究。最后,对绿色氢气生产进行了经济评估。氢气生产成本取决于几个因素,例如可再生能源、电解类型、天气条件、安装成本和每日氢气生产率。 PV/H 2 和风能/H 2 系统都适用于偏远和干旱地区。只需最低限度的维护,并且无需动力循环即可发电。集中式 CSP/H 2 系统需要动力循环。如果使用风能/H 2 而不是 PV/H 2 ,制氢成本会更高。绿色能源可用于多种应用,例如制氢、冷却系统、加热和海水淡化。
热能储存 (TES) 与核能相结合可以成为解决随着太阳能和风能使用范围扩大而出现的能源生产和需求不匹配问题的变革性贡献。TES 可以为核电站创造新的收入,并有助于降低电网的碳排放。作者之前的工作确定了两种将 TES 与核能接口的技术方法。第一种方法称为主循环 TES,在主朗肯动力循环内对 TES 充电和放电。第二种方法称为次级循环 TES 或 SCTES,将 TES 放电至次级动力循环。本研究分析了 TES 在 1050 MW 核电站套利市场中的潜在经济效益。该研究首次对由于使用 TES 而导致的容量系数变化对收入和内部收益率 (IRR) 的影响进行了现实的量化。该分析针对德克萨斯州电力可靠性委员会 (ERCOT) 代表的一家示范性非管制公用事业公司,针对其三年的峰值功率从传统核电站的 120% 到 150% 进行分析。SCTES 始终提供最高的收入和 IRR。随着 TES 的使用增加和电价的变化,收益也会增加。结果提供了对 TES 与核电整合对经济的影响的技术合理理解,并为追求 SCTES 的设计和实施提供了强有力的经济支持。[DOI:10.1115/1.4053419]
我们提出了一种多功能能源系统的概念,即储能电厂,作为一种可能的解决方案,用于解决大多数国家在电力部门引入可再生能源后出现的可变残余负荷。储能电厂由一个光伏发电厂、一个带电加热器以转化太阳能的储热系统、一个将储存的热量转化为可调度电能的蒸汽动力循环、一个基于生物质或其他可再生碳氢化合物燃烧的储能备用加热装置,以及一个用于峰值负荷的带废热回收的燃气轮机组成。在解释了储能电厂的概念之后,本文描述了德国电力部门的模拟模型及其从2020年可再生电力份额约为40%到2040年可再生电力份额假设为90%的转变。该时期的多指标基准测试表明,储能电厂可以在实现排放目标和同时维持德国电力部门的全面供应安全方面发挥关键作用。
可持续热能 (TE4S) 研究小组专门从事应用热工程,从组件和系统级设计到数值分析和实验阶段。重点关注领域包括聚光太阳能技术、制氢、热能存储、涡轮机械、先进动力循环和能源系统建模。TE4S 坚定地致力于技术创新,这一点从其获得 50 多项专利(其中相当一部分获得国际认可)、在领先期刊上发表 300 多篇研究论文以及在不到 20 年的时间内发表近 50 篇博士论文可以看出。这些成就是参与由西班牙和地方政府、欧盟委员会和美国能源部资助的众多项目的结果。TE4S 与麻省理工学院、IASS-Potsdam 或桑迪亚国家实验室等知名学术机构和实验室建立了牢固的联盟。此外,与能源、电力和推进领域的行业和私营公司的频繁合作增强了 TE4S 的创新领导力。欲了解更多信息,请访问:TE4S 工作人员:https://short.upm.es/qwmqx TE4S 科学成果:https://short.upm.es/8a3zb