哌醋甲酯是一种广泛使用且有效的治疗方法,用于注意力/多动症(ADHD),但尚未完全了解潜在的神经机制及其与行为变化的关系。特别是,在患有多动症的个体中,哌醋甲酯如何影响大脑和行为动力学以及这些动力学之间的相互作用。为了解决这一差距,我们使用了一种新型的贝叶斯动力学系统模型来研究哌醋甲酯对27名ADHD儿童潜在脑状态的影响,通常使用双盲,安慰剂控制的跨界设计通常会培养儿童。甲基苯甲酸酯在ADHD儿童的连续绩效任务上修复了更大的行为变异性。与通常发育的儿童相比,患有多动症的儿童表现出异常的潜在大脑状态动力学,单个潜在状态特别表现出异常动力学,这是由甲基苯甲酸酯修复的。此外,ADHD儿童在默认模式网络中显示出脑状态依赖性的超连接性,该网络也通过哌醋甲酯修复。最后,我们发现甲基苯甲酸酯引起的潜在大脑状态动力学的变化以及显着性和默认模式网络之间与大脑状态相关的功能连通性与行为变异性的改善相关。综上所述,我们的发现揭示了一种新型的潜在大脑状态动力学过程和电路机制,其基础是哌醋甲酯在儿童ADHD中的治疗作用。我们建议贝叶斯动力学系统模型可能对于捕获与ADHD相关的神经活动和行为变异性的复杂非线性变化特别有用。我们的方法对临床医生和研究人员可能具有价值,该研究人员研究了精神疾病的药理学治疗基础的神经机制。
摘要:大多数未连接到主电网的偏远地区都依靠柴油发电机提供电力。高昂的燃料运输成本和大量的碳排放促使这些地区开发和安装使用可再生能源的混合动力系统。由于风能和太阳能是间歇性的,因此这些能源通常与储能相结合,以获得更稳定的电力供应。本文介绍了一种使用机载风能、太阳能光伏、电池和柴油发电机的离网混合动力系统的建模和定型框架。该框架基于 ERA5 再分析数据集中的风能资源的每小时时间序列数据和 NREL 维护的国家太阳辐射数据库中的太阳能资源。负载数据还包括使用欧洲电力传输系统运营商网络维护的 ENTSO-E 平台的模型和实际数据组合生成的每小时时间序列。该框架的支柱是混合动力系统组件的定型策略,旨在最大限度地降低电力的平准化成本。根据 Kitepower BV 提供的规格,对软翼地面发电 AWE 系统进行建模。通过使用准稳态模型优化系统运行来计算功率曲线。太阳能光伏模块、电池系统和柴油发电机模型均基于公开可用的现成解决方案的规格。MATLAB 环境中框架的源代码可通过 GitHub 存储库获取。为了展示结果,我们描述了一个位于法国马赛的离网军事训练营的假设案例研究。结果表明,通过从纯柴油发电转向由机载风能、太阳能光伏、电池和柴油组成的混合动力系统,可以显著降低电力成本。
论文应以硬公制 (SI) 单位编写。除新产品技术会议外,应省略纯描述性或包含商业性的内容。最终稿件应对最新技术做出贡献或提供全面的评论,具有高技术质量,结论由技术数据支持。提交论文的作者在其最终稿件被接受后,需要通过 SETC 网站(链接到注册系统)进行在线提前注册,并携带自己的 PC 到会场进行演示。优秀的论文和演讲将获得奖励。您的技术论文可能会被选入 SAE 期刊。
摘要:近年来,在商业建筑中使用太阳能光伏(PV)生成和电池能量存储(BES)系统的使用量显着增加。但是,大多数这些系统旨在仅最大程度地减少投资和运营成本。对高影响力低概率(HILP)事件(例如自然灾害及其对电力系统弹性的影响)的担忧日益担忧,因此在电力系统基础架构计划问题中迫切需要将中断风险整合在一起。本文研究了各种电力对PV和BES Systems在商业建筑中的可行性的影响,以实现财务和弹性目的。使用可再生能源整合与优化(REOPT)决策支持软件进行了,以优化太阳能PV和BES Systems的大小,以实现财务和弹性的目的,考虑到地理位置,负载攻击,电力,电力率和中断时间的不同组合。 可行性评估是通过分析和比较参数组合的净现值(NPV)来进行的。使用可再生能源整合与优化(REOPT)决策支持软件进行了,以优化太阳能PV和BES Systems的大小,以实现财务和弹性的目的,考虑到地理位置,负载攻击,电力,电力率和中断时间的不同组合。 可行性评估是通过分析和比较参数组合的净现值(NPV)来进行的。,以优化太阳能PV和BES Systems的大小,以实现财务和弹性的目的,考虑到地理位置,负载攻击,电力,电力率和中断时间的不同组合。可行性评估是通过分析和比较参数组合的净现值(NPV)来进行的。
重塑佛罗里达州劳动力系统:转型的三大支柱计划 重塑教育和职业帮助 (REACH) 法案推动全州系统转型,于 2021 年获得佛罗里达州立法机构的一致批准,并由州长 DeSantis 签署成为法律。REACH 法案通过提高州企业和教育界之间的协作与合作水平,同时改善内部培训和更一体化的劳动力和教育系统的机会,满足佛罗里达州经济不断变化的需求。REACH 法案为该州的人才发展生态系统制定了全面的蓝图。它要求以客户为中心的改进,以重塑和现代化互补但往往孤立的教育、劳动力发展和公共援助系统,通过政策和绩效直接影响该州的人才管道。就州劳动力系统(佛罗里达州职业资源网络)而言,REACH 法案指示:
该项目的成功证明了太平洋能源集团广泛的内部能力,包括其子公司的专业参与,太平洋能源有限公司负责交付太平洋能源公司的低排放燃气发电站,MVLV电力解决方案负责设计、制造和安装开关设备和BESS外壳,数字智能负责交付BESS控制系统。
• 了解航天器电力系统的基本要素 • 研究太阳能电池、太阳能电池阵列、电池、电力转换电子设备、动态电力转换器和电力分配等电力技术的基础物理和工程原理 • 关注推动使用特定电力技术的任务要求 • 评估电力系统元素的可用选项 • 考虑特定电力技术方法的能力和局限性 • 学习航天器电力系统的分析技术和实际设计考虑因素 • 跟踪空间电力系统及其市场的发展 • 探索空间电力发电和分配的选项,如空间太阳能发电场、空间束流电网、月球和空间其他天体上的发电站 主要教科书:本课程以讲座幻灯片形式授课,但拥有幻灯片 #1 或 #2 的副本将支持补充阅读作业。
能源是所有发达国家和发展中国家的财富,社会发展和改善生活质量的关键因素[1]。全球能源需求的增长可能比人口增长快。化石燃料正在满足世界上近80%的能源需求[2]。结果,化石燃料的储备正在迅速减少,化石燃料消耗增加了碳排放,从而升级了我们周围环境的平均温度。在这种情况下,专家正在关注可再生能源,从而减少碳排放,并重复自然能源来发电。Renewable energies are energy sources that are continually replenished by nature and derived directly from the sun (such as thermal, photochemical, and photoelectric), indirectly from the sun (such as wind, hydropower, and photosynthetic energy stored in biomass), or from other natural movements and mechanisms of the environment (such as geothermal and tidal energy).可再生能源不仅是将来的无限能源,而且由于化石燃料的持续耗尽和能源需求的不断增长,因此对环境友好和环境可持续性。使用化石燃料发电主要有助于二氧化碳(CO 2)排放,这对环境非常有害。
摘要:本研究调查了燃料电池作为微电网能源系统应用中的储能单元的使用情况,以提高可再生能源的自用率。原型评估由太阳能光伏和燃料电池储能单元组成。该研究利用了以 1 分钟时间分辨率获得的家庭实验天气和电力负荷数据。被评估家庭的日平均能耗为 10.3 kWh,峰值功率输出为 5.4 kW,年能耗为 3757 kWh。所研究的太阳能系统的容量为 3.6 kWp,而燃料电池系统的容量为 0 – 3 kW,可有效与光伏系统集成并最大限度地利用可再生能源。研究表明,通过安装由可再生能源产生的氢气驱动的燃料电池,自用和自给自足能力显着提高。年度能量流表明,2.5 kW 燃料电池的实施将可再生能源利用率从 0.622 提高到 0.918,同时将能源自耗提高 98.4% 至 3338.2 kWh/年,自给率提高 94.41% 至 3218.8 kWh/年。