摘要:由于航运业的排放,人们对环境问题的关注日益增加,这加速了人们对开发可持续能源和传统碳氢化合物燃料替代品以减少碳排放的兴趣。混合动力系统主要通过将替代能源与碳氢化合物燃料相结合来使用,因为前者的能源效率相对较小。为了使这种混合系统高效运行,必须优化多个电源的电源管理,并了解具有不同装载操作曲线的不同船舶类型的功率需求。这可以通过使用能源管理系统 (EMS) 或电源管理系统 (PMS) 和混合船舶电力系统的控制方法来实现。本综述论文重点介绍了采用的不同 EMS 和控制策略来优化电源管理以及降低燃料消耗,从而减少混合船舶系统的碳排放。本文首先介绍了常用的不同混合动力推进系统,即柴油机械、柴油电力、全电动和其他混合动力系统。然后,对不同的 EMS 和控制方法策略进行了全面回顾,随后将替代能源与柴油动力进行了比较。最后,讨论了混合动力系统的差距、挑战和未来工作。
ERTRAC 在本文件中提供了研究界对解决公路运输面临的环境和能源挑战的不同技术方案的看法。作为一个技术平台,ERTRAC 的工作集中且仅限于技术方面。虽然承认社会经济方面对于政策制定和市场成功具有高度重要性,但这些不在 ERTRAC 的范围内;因此,成本、投资和用户接受度等方面仅作为关键因素提及,但并未在本文件中详细阐述。因此,本文件仅应作为参考阅读,其中列出了所有采用可持续能源和动力系统的公路运输方案的潜在研究需求。众所周知,欧洲针对能源和流动性的政策也调查和权衡了社会、经济和政治方面,因此欧洲政策是在这些不同标准之间平衡制定的。作为一个技术平台,ERTRAC 不参与欧盟监管流程,仅提供研究界正在进行的努力的映射:评估技术选择并在更广泛的社会、经济和政治条件框架内做出决策是政策制定者而不是 ERTRAC 的职责。
摘要:航运业的排放引起了人们对环境问题的日益关注,这加速了人们对开发可持续能源和传统碳氢燃料替代品以减少碳排放的兴趣。混合动力系统主要通过将替代能源与碳氢燃料相结合来使用,因为前者的能源效率相对较低。为了使这种混合动力系统高效运行,必须优化多个电源的电源管理,并了解不同类型船舶和不同装载运行曲线的功率需求。这可以通过使用能源管理系统 (EMS) 或电源管理系统 (PMS) 和混合船舶动力系统的控制方法来实现。本综述论文重点介绍了为优化电源管理以及降低燃料消耗和减少混合动力船舶系统的碳排放而采用的不同 EMS 和控制策略。本文首先介绍了常用的不同混合动力推进系统,即柴油机械、柴油电动、全电动和其他混合动力系统。然后,对不同的 EMS 和控制方法策略进行全面回顾,随后将替代能源与柴油动力进行比较。最后,讨论了混合动力系统的差距、挑战和未来工作。
太平洋能源集团控股有限公司 | 电子邮件:info@pacificenergy.com.au | 网站:pacificenergy.com.au | ABN:22 009 191 744 兰兹代尔 电话:+61 8 9303 8800 地址:338 Gnangara Road, Landsdale WA 6065 PO Box 5, Kingsway WA 6065 柯伊代尔 电话:+61 8 9453 3375 地址:2 Chisholm Crescent, Kewdale WA 6105 PO Box 261, Cloverdale WA 6985 卡尔古利 电话:+61 8 9000 1450 地址:6 Greenhill Road, West Kalgoorlie WA 6430
摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增加、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机动力系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机动力系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载动力系统中,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机动力系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增长、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机电源系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机电源系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载电源系统,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机电源系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
使用这两种轴承技术的早期Stirling设计成功地证明了实验室的性能和寿命,并有可能使DRP生成器持续至少17年,这通常是长期过境时间到外行星及其月亮所需的时间。虽然尚未在太空中飞行过Stirl转换器,但Stirling Cryocoolers与类似的支撑技术配对,在许多太空任务(包括16年的Rhessi Solar Flare天文台)上非常成功地使用了。AMSC和SunPower已为NASA Glenn提供了原型转换器,其中一些已完成了超过4,000个小时的操作和测试。单位将进行环境测试,以证明对太空任务期间预期的恶劣条件的鲁棒性。
氢能在低碳能源转型中扮演着重要的角色,电—氢耦合将成为典型的能源场景。针对高风电、光伏占比的低碳电—氢耦合系统的运行灵活性,本文基于模型预测控制对电—氢耦合能源块灵活性裕度进行研究。通过分析异质能源功率交换特性,建立各类异质能源均质化模型。针对电力系统灵活性裕度分析,从系统运行维度定义3个维度的灵活性裕度评价指标,建立电—氢耦合能源块调度模型。采用模型预测控制算法对电—氢耦合能源块功率平衡运行进行优化,定量分析计算能源块灵活性裕度。通过实例分析,验证了本文提出的计算方法不仅能实现电—氢耦合能源块的在线功率平衡优化,而且能有效量化电—氢耦合能源块的运行灵活性裕度。
摘要:本文介绍了四种离网混合电力系统为厄瓜多尔 Cerrito de los Morreños 社区供电的技术、经济、运营和环境可行性。这些配置由柴油发电机、太阳能光伏系统和电池储能系统组合而成。对每种配置进行了模拟,并针对两种不同的负载条件分析了结果:(1) 现有负载曲线和 (2) 通过纳入能源效率计划而降低的负载曲线。使用 Homer Pro 软件进行模拟。模拟的规划期选定为 15 年。结果表明,具有能源效率的柴油/光伏/电池配置表现出最佳性能,该配置由 160 kWp 的光伏系统、165 kW 的现有发电机和 283 kWh 的储能系统实现。独立柴油发电机和光伏/柴油配置显示出更高的净现值成本、不稳定问题和更高的二氧化碳排放量。此外,与各自的节能方案相比,没有能源效率的配置成本增加了 15% 到 40%。这项工作中的信息可能对厄瓜多尔一些有兴趣投资可再生能源农村电气化项目以减少和/或补偿其二氧化碳排放量的组织有用。