摘要 - 本文章为由配备有主动平衡电路的串联连接电池制成的锂离子电池模块制定并解决了多目标快速充电最小降解最佳控制问题(OCP)。模块中的细胞会受到人体不屈服的缺陷和非均匀工作条件引起的异质性。每个细胞通过耦合的非线性电化学,疗法和衰老模型表达,直接搭配方法用于将OCP转录为非线性编程问题(NLP)。建议的OCP是在两种不同的充电操作方案下制定的:1)相同的充电时间(OCP-SCT)和2)不同的充电时间(OCP-DCT)。前者都假定所有细胞的同时充电,无论其初始条件如何,而后者允许细胞的不同充电时间来解释异质的初始条件。对于具有两个串联连接细胞具有内在异质性的模块,就电荷状态和健康状况解决了问题。结果表明,OCP-DCT方案为处理异质性,较低的温度升高,充电电流幅度和降解提供了更大的灵活性。最后,与长期骑自行车操作中恒定电流(CC)充电的共同实践的比较表明,在控制(OCP-SCT和OCP-DCT)方案下,有希望的节省在保留能力方面都是可实现的。
摘要:由于电动汽车的发射低,能源效率和降低对化石燃料的依赖,电动汽车(EV)变得越来越受欢迎。电动汽车中最关键的组件之一是储能和管理系统,它需要紧凑,轻巧,效率高和卓越的构建质量。主动电池均衡电路(例如电池管理系统(BMS)中使用的电路)已经开发出来,以平衡单个电池的电压和电荷(SOC),从而确保了储能系统的安全性和可靠性。使用这些类型的均衡电路提供了几种好处,包括改进的电池性能,延长的电池寿命和增强的安全性,这对于成功采用电动汽车至关重要。本文提供了与主动细胞均衡电路相关的研究工作的全面概述。本评论重点介绍了重要方面,优势和缺点以及规范。
EPS 可使您价格适中的 Model 2020 ProBalancer 分析仪的功能提升到比其价格高出数千美元的分析仪的功能范围。EPS 的自动跟踪和平衡解决方案可消除繁琐的计算、手动图表更正和手动计算错误;帮助您快速获得准确的平衡解决方案,并通过加快数据采集过程最大限度地减少燃油消耗和飞机运行时间。EPS 固有的学习算法会获取每次运行期间获取的数据,从中学习,并将这些知识应用于每次后续运行,从而改进解决方案过程并不断缩短达到可接受振动水平所需的时间。EPS 可与 ACES Systems 的 Model 2020 ProBalancer 分析仪一起使用。有三种 EPS 版本可供选择,可根据每个应用的独特平衡需求进行量身定制:主旋翼、尾旋翼和螺旋桨。