抽象的假发是高速车辆,使用地面上方的动态原理。今天,此类船只的当前例子和项目主要是大型或中型的载人车,可以确保飞行过程中确保稳定的空气动力学特征。同时,车辆发展的现代趋势表明,对小型无人车辆的兴趣日益增加。目前,创建小型载人和无人驾驶假发的问题已变得有意义。在介绍的工作中,根据von karman-gabrielli方法论,评估了运输假发的效率以及其他类型的车辆。考虑使用无人设备等小型设备的可能性。假发的生产率取决于其空气动力学特征。比例因子对假发非常重要,因为空气动力学取决于机翼的大小。提出了基于飞机空气动力学方案的小型假发的设计。使用CFD建模评估了所提出的设备的空气动力学特性。结果表明,船舶的空气纳米性质受到清除和速度的极大影响。地面效应可将空气动力学质量提高到1.5倍,以高达250 km/h的速度运输有效载荷,起飞重量为2.7吨。对计算结果的分析表明,无人假发的拟议项目是完全运行的,并且有望解决小型有效载荷的高速交付问题。根据空气动力学特征的计算结果,确定了设备的特定能力,这表明所提出的均值的理论效率很高。
最近已显示在湍流边界层(TBL)中应用动态自由滑道边界,向外移动了近壁横向涡度从墙壁上移开,并将壁皮摩擦降低了40%以上。在此,我们提出了一种由动态自由滑行边界引起的局部重新性化机制,从能量交换和运输的角度来看。提出了与平均运动,湍流运动和无剪切振荡运动相关的能量成分的空间演化。对近壁区域中平均能量交换过程的分析表明,针对规范向下湍流能量级联,湍流的能量被转移到平均运动中。将大量的能量提供给无剪切动作,该动作“置换”了高度湍流和剪切的运动。复发机制与壁附近的剪切运动的外向横向涡度和剪切运动的耗竭有关。作为操纵壁剪应力产生的关键区域的有效方法,动态自由滑移边界比常规的雷米线化过程产生的效果要强得多,可用于减少有效的阻力减少和边界层控制。