恶性肺癌发病率高,5年生存率极差。人类细胞内约80%-90%的蛋白质降解是通过泛素化酶途径进行的,特异性极高的泛素连接酶(E3)在靶蛋白的泛素化过程中起着至关重要的作用,泛素化通常发生在底物蛋白的赖氨酸残基上。不同的泛素化形式对靶蛋白的影响不同,多个短链泛素化残基修饰底物蛋白,是蛋白质降解的有利信号。细胞内蛋白质泛素化与去泛素化之间适应生理需要的动态平衡,有利于生物体的健康。蛋白质泛素化对许多生物学途径都有影响,这些途径的失衡导致包括肺癌在内的疾病。抑癌蛋白因子的泛素化或肿瘤致癌蛋白因子的去泛素化往往导致肺癌的进展。泛素蛋白酶体系统(UPS)是肺癌新型抗癌药物研发的宝库,尤其是针对蛋白酶体和E3s,精准靶向的致癌蛋白泛素化降解可能为肺癌药物研发提供光明的前景;特别是蛋白水解靶向嵌合(PROTAC)诱导的蛋白质降解技术将为肺癌新型药物的研发提供新的策略。
健康大脑的有效功能取决于两个半球同源区域之间的动态平衡。这种平衡是通过脊间抑制作用促进的,这是大脑组织的关键方面。本质上,一个半球的兴奋性预测激活了其对应物的抑制网络,从而有助于形成周围的侧面网络(Zatorre等,2012; Carson,2020)。这些网络的形成实现了“截然不见”机制在获得神经元皮质水平的新功能方面起着至关重要的作用。它支持运动控制的发展(Mahan和Georgopoulos,2013; Georgopoulos and Carpenter,2015年),并增强了感官感知敏锐度(Kolasinski等,2017; Grujic et al。,2022)。因此,同源半球区域之间的相互作用调节控制人体段的网络的抑制 - 激发平衡,这对于自适应可塑性和学习过程至关重要(Das和Gilbert,1999; Graziadio等,2010)。在诸如疲劳之类的慢性疾病中,半球间的平衡至关重要(Cogliati dezza等,2015; Ondobaka等,2022),它会影响中风的严重程度(Deco和Corbetta,2011; Pellegrino,2011; Pellegrino et al。,2012; Zappasodi et al。 Al。,2013)。尤其是,已经观察到旨在缓解疲劳的神经调节干预措施恢复了原发性运动区域的生理同源性(Porcaro等,2019)和皮质脊柱(Bertoli等,2023年)。
开发量子技术需要控制和理解多体系统中量子信息的非平衡动力学。局部信息通过创建复杂的关联(称为信息扰乱)在系统中传播,因为此过程阻止从局部测量中提取信息。在这项工作中,我们开发了一个改编自固态 NMR 方法的模型来量化信息扰乱。扰乱是通过时间反转 Loschmidt 回波 (LE) 和多重量子相干实验来测量的,这些实验本质上包含缺陷。考虑到这些缺陷,我们推导出非时间序相关器 (OTOC) 的表达式,以基于测量信息传播的活跃自旋数量来量化可观察的信息扰乱。基于 OTOC 表达式,退相干效应自然是由 LE 实验中未反转项的影响引起的。退相干会导致可测量程度的信息扰乱的局部化。这些效应定义了可观测的活跃自旋数量的局部化簇大小,从而确定了动态平衡。我们将模型的预测与使用固态 NMR 实验进行的量子模拟进行了对比,该实验测量了具有受控缺陷的时间反转回波的信息扰乱。从实验数据确定的量子信息扰乱的动态和其局部化效应之间具有极好的定量一致性。所提出的模型和派生的 OTOC 为量化大型量子系统(超过 10 4 个自旋)的量子信息动态提供了工具,与本质上包含缺陷的实验实现一致。
抽象目标肠道病毒素是居住在胃肠道和微生物群中不可或缺的一部分的病毒的密集社区。病毒瘤与微生物群的其他成分并在动态平衡中共存,这是维持肠内稳态和功能的关键因素。但是,在某些病理状态(包括炎症性肠病)中可以中断这种平衡,从而导致营养不良,可能参与疾病发病机理。然而,病毒蛋白营养不良是因果关系还是旁观者事件,需要进一步澄清。设计本评论旨在总结肠道病毒蛋白研究的最新进步,并强调了其与粘膜微环境的串扰。它探讨了尖端技术如何基于当前知识以推进该领域的研究。提供了胃肠道胃肠道中病毒蛋白移植的概述,并洞悉基于创新的病毒素治疗剂的发展以改善临床管理。结果主要是由小尾病毒的扩张驱动的肠道病毒营养不良,已被证明会影响肠道免疫和屏障功能,从而影响整体肠内稳态。尽管新兴的创新技术仍然需要进一步的实施,但它们显示出前所未有的潜力,可以更好地表征病毒素组成并描述其在肠道疾病中的作用。结论得益于测序技术和生物信息学管道的进步,肠道病毒的领域正在逐步扩展。这些有助于更好地了解病毒蛋白营养不良与肠道疾病的发病机理以及病毒蛋白组成的调节如何有助于临床干预以减轻肠道疾病管理有关。
厌氧铵氧化(ANAMMOX)生物膜过程已被认为是一种有效的方法,可以保留和积累系统中的Anammox细菌。作为过程性能的主要决定因素,但是在生物膜形成期间,在Anammox伴侣内的微生物相互作用和代谢尚不清楚。因此,这项研究系统地研究了Anammox系统中的微生物依次,代谢和分子调节机制,并与载体的添加相比,并比较了不同尺寸颗粒和生物膜中MI Croornismiss的差异反应。Anammox生物膜反应器的氮去除效率保持稳定,为90.0±3.8%。微生物群落分析表明,蛋白质细菌,氯反llexi和planctomycetota在Anammox颗粒和生物膜中都是主要的门。具体而言,kuenenia念珠菌和未分类的_f_brocadiaceae是主要的Anammox细菌,相对丰度分别为17.9±3.8%和3.6±0.5%。增加载体可以使微生物形成空间异质性分布模式,这有利于增强微生物相互作用并维持ANAMMOX系统的动态平衡。天冬氨酸和谷氨酸是系统中的主要中间体,这对于嘧啶和嘌呤的合成也很重要。在Anammox生物膜中,这些代谢途径的丰度显着上调了30.0±5.1%,反映了微生物的代谢活性较高,这进一步促进了功能细菌的增殖和积累。这项全面的研究强调了携带者在生物膜中Anammox Consortia增强代谢活性和稳定性中的作用,并提供了整体见解,以优化废水处理中的Anammox Biofilm工艺。
土壤胞外酶活性(EEA)化学计量学反映了微生物对资源的代谢需求和养分有效性之间的动态平衡。然而,在贫营养环境下的干旱荒漠地区,代谢限制的变化及其驱动因素仍不清楚。在本研究中,我们调查了中国西部不同沙漠类型的样本,并测量了两种碳获取酶(β-1,4-葡萄糖苷酶和β-D-纤维二糖水解酶)、两种氮获取酶(β-1,4-N-乙酰氨基葡萄糖苷酶和L-亮氨酸氨基肽酶)和一种有机磷获取酶(碱性磷酸酶)的活性,以量化和比较土壤微生物基于其EEA化学计量学的代谢限制。所有沙漠的对数转换后的 C、N 和 P 获取酶活性比率为 1:1.1:0.9,接近假设的全球平均 EEA 化学计量比(1:1:1)。我们使用比例 EEA 通过矢量分析量化了微生物营养限制,发现微生物代谢受到土壤 C 和 N 的共同限制。对于不同类型的沙漠,微生物 N 限制按以下顺序增加:砾石沙漠 < 沙沙漠 < 泥沙漠 < 盐沙漠。总体而言,研究区域的气候对微生物限制变化的解释比例最大(17.9 %),其次是土壤非生物因素(6.6 %)和生物因素(5.1 %)。我们的研究结果证实,EEA 化学计量学方法可用于多种沙漠类型的微生物资源生态学研究,并且即使在沙漠等极度贫营养环境中,土壤微生物也能通过调节酶的产生来增加对稀缺营养物质的吸收,从而维持群落水平的营养元素稳态。
在过去的十年中,许多效果一直致力于了解如何从孤立的量子系统开始在哈密顿动力学,平衡和有效的热力学在长时间出现[1]。另一方面,对开放量子系统的研究引发了人们对在开放系统的量子演变下发生的量子热力学问题的兴趣[2]。量子动力学如何从量子动力学出现,量子系统如何动态平衡和热化以及是否始终在量子状态下达到热力化的问题是量子热力学研究的核心。显然,热力学物理学的基本要素是统计,即所研究系统的随机性质。我们的团队是使用用激光直接 - 连续方法制造的集成量子波导电路在随机光子结构中实施随机量子光的先驱之一[3]。当超短激光脉冲紧密聚焦于透明的散装材料中时,非线性吸收会导致光学分解和微等离子体的形成,从而诱导材料的分子结构永久变化。在融合二氧化硅作为宿主材料的特定情况下,密度在局部增加,从而永久增加了折射率。这些变化的尺寸大致与焦点区域的大小相同。通过相对于光束横向移动样品,获得了连续的修改并创建波导(见图1a)。1b)。这样的指南几乎可以沿任意路径的任何安排编写,因为放置焦点的唯一限制因素是写作目标的焦距。在我们在随机光子波导结构上的工作中,我们制造了具有随机间距[5]和随机折射率[6]的波导的扩展晶格[6],从而产生了整个波函数的统计传播动力学(见图在将量子光发射到这些结构中并检查两粒子相关函数时,人们观察到,除了光子的预期玻体束外,发生了热化过程,因此光子位于结构中心(见图1C),显然正在从弹道运输到本地化的过渡。
人类疟疾的主要病因是恶性疟原虫,该疟原虫通过咬人的蚊子传播。在涉及多效性细胞因子转化生长因子-β(TGF-β)的宿主中的免疫调节在控制对恶性疟原虫感染的免疫反应方面具有至关重要的作用。基于对已发表文献的搜索,这项研究研究了疟疾与免疫细胞之间的相关性,特别是TGF-β在免疫反应中的作用。分析的研究表明,当出现低量时TGF-β会促进炎症,但在高浓度时会抑制炎症。因此,它是炎症的重要调节剂。也已经证明,宿主产生的TGF-β的量会影响寄生虫对宿主的严重影响。宿主中的TGF-β水平较低,阻止宿主能够管理疟原虫引起的炎症,从而导致病理状况,使宿主容易受到致命感染的影响。此外,TGF-β的量在整个宿主的疟原虫感染中波动。在疟原虫感染开始时,TGF-β水平明显增加,并且随着疟原虫的迅速成倍增加,它们开始下降,阻碍了进一步的生长。此外,它还参与了各种类型的免疫细胞的生长,增殖和操作,并与与疟疾的免疫反应相关的细胞因子水平相关。因此,TGF-β可能平衡免疫介导的病理损害以及传染病的调节和清除率。TGF-β水平与抗炎细胞因子白介素-10(IL-10)正相关,但与严重的玛拉里亚(Malaria)患者中促炎细胞因子干扰素-γ(IFN-γ)和IL-6的促炎细胞因子γ(IL-γ)呈负相关。许多国内和国际研究表明,当炎症水平过高,当炎症水平过高时,TGF-β通过充当抗炎因子,在抗炎与疟疾免疫力促炎之间保持动态平衡。此类信息可能与迫切需要的疫苗和药物的设计有关,以应对随着疟疾的扩散和耐药性的发展而产生的新兴风险。
卡里学院的学生可以选择两门生物学入门课程,每门课程都采用以学生为中心的主动学习方法,通过动手活动和实验室培养探究技能和概念理解。当学生直接参与所学的概念和技能时,他们将获得对生物学的深入了解。这两门课程都强调发现过程,而不是死记硬背事实,这样学生不仅可以学习科学,还可以思考科学。学生应该选择最能反映他们兴趣和准备的生物学入门课程,要知道这两门课程都将满足卡里学院的毕业要求,并为学生进一步学习高级生物学以及任何其他科学课程做好准备。SCI101:生物学:生态焦点这门基于模型和实验室的课程通过生态学的视角探索生物学的总体原理。学生将在宏观和微观层面研究生物如何满足生命特征以及生物与其环境之间的相互联系。我们将特别强调生物体内部和生物体之间的能量储存和转移,以及生物体为应对环境挑战而采用的各种策略和适应能力。学生将通过数字图像、显微镜工作和解剖来研究各种多细胞和单细胞生物的特征。学生将获得实验设计、研究、数据收集、分析和交流方面的科学素养技能。 SCI102:生物学:分子焦点这门基于探究和实验室的课程从分子角度探索生物学的基本概念。通过从生物体的微观到宏观层面研究生物学,学生将了解到 DNA 和基因表达决定生物的形态、功能并影响生物的行为。在种群基因层面上研究当前对进化和自然选择的解释。学生逐渐认识到生命系统是化学系统。该课程将包括以下七个组织原则,旨在提高生物素养:实验设计;相互作用和相互依存;进化;遗传连续性;生长、发育和分化;能量、物质和组织;以及维持动态平衡。先修课程:化学:物质的粒子性质或化学:物质的交互框架
项目叙述:柯林斯堡市智能电网电动汽车充电管理解决方案 a. 概述/项目描述 加速的汽车电气化和分布式能源为动态平衡电网资源带来了新的挑战,并推动了公用事业投资成本的大幅增加,同时引发了对电网可靠性的担忧。柯林斯堡市的目标是在提供可靠且经济实惠的电力服务的同时,推动全市汽车电气化。先进的智能电网系统能够了解分布式汽车充电需求和限制以及本地电网配电瓶颈,这对于支持可靠的电力服务至关重要,而无需过度建设新的基础设施。该市寻求为其目前运营的 40 多辆电动汽车(包括两辆电池电动公交车 (BEB))实施智能电网电动汽车 (EV) 充电管理解决方案,这将展示有效的负载和需求平衡,并提供一种随着服务区内电动汽车数量的增加而最大限度降低纳税人成本的方法。鉴于该市直接拥有并运营电力公司和公共交通机构的地位,它拥有独特的机会全面应对其在从电力系统和车队管理角度为各种市政车队通电时面临的挑战。管理城市中新电动汽车车队的充电使电力公司能够通过现有的电力基础设施增加能源使用量,从而对电力公司费率产生下行压力并为社区成员带来好处。此外,随着该市扩大其各种市政车队中的电动汽车数量,它已经发现了电动汽车特有的运营和管理挑战,这些挑战将随着其电动车队的推进而继续增加。拟议项目解决了电力公司和车队管理者面临的这些挑战,包括电网影响和基础设施升级以支持车队充电、最大限度地降低城市车队车辆的当前和未来能源成本、车辆充电周期以确保可靠运行和最大资产寿命,以及电动车队运营的数据收集以支持资本和运营规划。该项目通过以下方式推进了 USDOT SMART 拨款计划的优先事项: