最近已显示在湍流边界层(TBL)中应用动态自由滑道边界,向外移动了近壁横向涡度从墙壁上移开,并将壁皮摩擦降低了40%以上。在此,我们提出了一种由动态自由滑行边界引起的局部重新性化机制,从能量交换和运输的角度来看。提出了与平均运动,湍流运动和无剪切振荡运动相关的能量成分的空间演化。对近壁区域中平均能量交换过程的分析表明,针对规范向下湍流能量级联,湍流的能量被转移到平均运动中。将大量的能量提供给无剪切动作,该动作“置换”了高度湍流和剪切的运动。复发机制与壁附近的剪切运动的外向横向涡度和剪切运动的耗竭有关。作为操纵壁剪应力产生的关键区域的有效方法,动态自由滑移边界比常规的雷米线化过程产生的效果要强得多,可用于减少有效的阻力减少和边界层控制。
利用人工智能设计功能性有机分子 用户名:Masato Sumida 1,2 Xiufeng Yang 2 日本理化学研究所实验室隶属关系: 1. 先进智能项目中心富士通协作中心 2. 先进智能项目中心目标导向平台技术研究组分子信息学团队
1。环境评估的背景评估水环境的概念已按照腐生方法,多样性指数和生物指数的顺序发展。污染方法以BOD(生物氧的要求)为例,并使用水质成分分析来评估适合水和工业用途的水。在评估人类清洁水的同时,有时候,清洁水流和动植物可以生存的环境的环境不一致。多样性指标可以通过评估组成平衡和总数来评估基因,物种,生态系统等。另一方面,它需要大量的时间和精力,并且不适合在人类彼此相邻的地方(例如Satoyama)的地方进行评估。生物指标测量有关典型物种的信息,并试图评估环境的良好性,最近有些人使用概念(例如完整性和健康)来评估环境。这些概念还抵消了污染方法和多样性指标的缺点。
深度神经网络越来越大,因此更难在受限的物联网设备上部署。拆分计算提供了一种解决方案,即拆分网络并将前几层放置在物联网设备上。这些层的输出被传输到云端,然后继续进行推理。早期的研究表明中间激活输出具有一定程度的高稀疏性,本文分析并利用激活稀疏性来减少将中间数据传输到云端时的网络通信开销。具体来说,我们分析了 CIFAR-10 和 ImageNet 上 ResNet-50 中两个早期层的中间激活,重点关注稀疏性以指导选择分割点的过程。我们对激活和特征图进行了动态修剪,发现稀疏性非常依赖于层的大小,权重与卷积层中的激活稀疏性无关。此外,我们表明,稀疏中间输出可以压缩 3.3 倍,准确度损失 1.1%,无需任何微调。当添加微调时,压缩系数增加到 14 倍,总体准确度损失为 1%。
非局域性是一个引人注目的概念,自量子理论诞生之初 [1,2] 至今,它一直吸引着学术界越来越多的兴趣。无论是通过贝尔非局域性 [3,4]、量子操控 [5,6]、一般的量子纠缠 [7],还是更广泛的量子不和谐 [8–11],非局域性一直是量子基础研究的核心。这是有原因的:由于多个实验证实了贝尔不等式的量子违反 [12–19],人们相信量子力学与经典力学有着根本的不同。这些研究带来了理论和技术突破 [20–28]。此外,甚至可以讨论时间中的纠缠 [29–33]。上述类型的非局域性与系统的制备(或制备和测量)有关。因此,它可以称为运动非局域性。使用模变量的概念引入的另一种非局域性[34]与量子系统遵循的运动方程有关,因此称为动态非局域性。尽管这些变量非常有前景,正如在连续系统量子信息的首次应用中已经证明的那样[35-38],但它们尚未得到社区相当一部分人的充分关注[39]。文献中考虑的最常见的模变量类型是模位置和模动量[35-48]。事实上,设ℓ和p0分别为长度和动量维数的参数,模算子
1。简介大气的低频可变性长期以来一直是动态气象社区中强烈投资的主题(Benzi等人。1986; Ghil 1987; Mo and Ghil 1987; Benzi and Speranza 1989; Tibaldi and Molteni 1990; Pelly and Hoskins 2003b,a)。 最近几十年来,人们对通过罗斯比波(Rossby Wave)介导的上层中部循环中的复杂相互作用以及表面极端事件(例如热浪)的兴趣越来越多,并具有歧管影响。 从半球到本地的多个尺度研究了这个主题,从过去的气候到未来的培训,以及许多应用,从数值天气预测(NWP)系统的可预测性到极端与天气相关的影响和风险评估。 热浪是高温的长时间发作,其持续时间从几天到几周,都需要不同的形成,发育和维护机械性。 在北半球,它们通常与高振幅上流层脊或阻塞反气旋有关。 这些通常嵌入到持久的大规模波模式中(White等人 2022),并且可以同时影响“同时热浪”,从而影响整个中间位置的几个区域(Kornhuber等人。 2020)。 这些是空间上复合极端事件的例子,这可以通过多个位置同时发生的危害导致极端的社会经济影响(CFR。 Zscheischler等。 2020)。 见图 尽管这种并发热浪的频率越来越高(Rogers等人1986; Ghil 1987; Mo and Ghil 1987; Benzi and Speranza 1989; Tibaldi and Molteni 1990; Pelly and Hoskins 2003b,a)。最近几十年来,人们对通过罗斯比波(Rossby Wave)介导的上层中部循环中的复杂相互作用以及表面极端事件(例如热浪)的兴趣越来越多,并具有歧管影响。从半球到本地的多个尺度研究了这个主题,从过去的气候到未来的培训,以及许多应用,从数值天气预测(NWP)系统的可预测性到极端与天气相关的影响和风险评估。热浪是高温的长时间发作,其持续时间从几天到几周,都需要不同的形成,发育和维护机械性。在北半球,它们通常与高振幅上流层脊或阻塞反气旋有关。这些通常嵌入到持久的大规模波模式中(White等人2022),并且可以同时影响“同时热浪”,从而影响整个中间位置的几个区域(Kornhuber等人。2020)。这些是空间上复合极端事件的例子,这可以通过多个位置同时发生的危害导致极端的社会经济影响(CFR。Zscheischler等。2020)。见图尽管这种并发热浪的频率越来越高(Rogers等人1,以2023年7月的并发热波的rossby波电势涡度和温度异常之间的关联。2022; Messori等。
la 2 O 3 + 15b→2lab 6 + 3bo↑(S1)将少量的硼(3 wt%)引入初始电荷中,以补偿由于合成温度下蒸气的高压而导致的硼可能损失。将电荷机械混合几天,至少在筛子中筛分至少5次,以便基于氧化物和硼打破砾岩,并尽可能地制备均匀的混合物。将准备好的混合物压入片剂中,直径为15毫米,高度为10毫米,在1650 0 C的温度下将其保持在真空炉中一个小时C,以约30度/分钟的速度缓慢升高,以确保去除所得气体。The equation (S1) reflects the overall reaction (initial (left side) and final (right side) stages), but the reduction reaction itself goes through intermediate stages that include the formation of borate (LaBO 3 ), a trace amount of hexaboride (LaB 6 ) and free boron (B free ) (~1055 0 C) and the subsequent reaction of the LaBO 3 with the remaining boron to form a hexa boride (1175 0 c)[1]