未经处理的排放。从红泥中浸出有害物质会改变土壤和水的矿物质和微生物稳定性。4使用红泥作为化学合成中矿物质的来源可能会减少红泥积累的环境影响。红泥富含氧化铝,二氧化硅和铁矿物质,可以用作合成沸石,铝利酸盐和中孔材料的前体。5红泥已直接用作吸附剂6,并用作生产陶瓷的原材料,7种地球聚合物,8道路材料,9个铺一个铺在10,10涂层,11和催化剂。12由于其强大的碱性培养基,一些研究人员将红泥作为催化剂。li等。将红泥作为异质的芬顿催化剂利用。13 Hidayat等人。使用钙/红泥催化剂通过转移效应将废料油转化为生物柴油。14该催化剂是通过降低钙的金属盐溶液中的湿浸出的,以钙化为止。红泥中的高氧化铁含量被用作挥发性有机化合物的氧化15的氧化催化剂,并在水力碳热解过程中打破C - C和/或C - H键。16个热和化学物质在用于化学合成之前在红泥中分开杂质。在ZSM-5的合成中,用NaOH处理红色泥浆,以去除可能干扰沸石纯度的铁物种。17一些研究人员通过钙化处理红泥,以将红泥的结晶相变为无定形。18 HCl和H 2 SO 4用于减少
摘要:振动光谱是一种无处不在的光谱技术,可表征功能性纳米结构材料,例如沸石,金属 - 有机框架(MOF)和金属 - 卤化物 - 卤化物perov-Skyites(MHP)。所得的实验光谱通常很复杂,具有低频框架模式和高频功能组振动。因此,理论上计算的光谱通常是阐明振动指纹的重要元素。原则上,有两种可能的方法来计算振动光谱:(i)一种静态方法,将势能表面(PES)近似为一组独立的谐波振荡器,以及(ii)一种动态方法,通过整合牛顿运动的方程来将PES围绕PES明确采样。动态方法考虑了Anharmonic和温度效应,并在真正的工作条件下提供了更真实的材料的代表;但是,此类模拟的计算成本大大增加。在量子机械水平上执行力和能量评估时,这肯定是正确的。分子动力学(MD)技术在计算化学领域已变得更加建立。然而,为了预测纳米结构材料的红外(IR)和拉曼光谱,其用法的探索程度较低,并且仅限于一些孤立的成功。因此,目前尚不清楚哪种方法应使用哪种方法来准确预测给定系统的振动光谱。■简介迄今为止缺乏一系列广泛的纳米结构材料的各种理论方法与实验光谱之间的全面比较研究。为了填补这一空白,我们在本文中提出了一个简洁的概述,该方法适用于准确预测各种纳米结构材料的振动光谱,并为此目的制定一系列理论指南。为此,考虑了四个不同的案例研究,每个案例研究都治疗了特定的物质方面,即柔性MOF的呼吸,刚性MOF UIO-66中缺陷的表征,金属 - 卤化物 - 卤化物perovskite CSPBBR 3中的Anharmonic振动以及对访客的吸附以及对Zeolite H-Ssz-ssz-13的孔的吸附。对于所有四种材料,在其宾客和无缺陷状态以及在足够低温下的所有四种材料中,静态和动态方法在定性上与实验结果一致。当温度升高时,由于存在Anharmonic语音子模式,CSPBBR 3的谐波近似开始失败。此外,缺陷和来宾物种的光谱指纹通过简单的谐波模型很好地预测。两种现象都弄平了势能表面(PES),这促进了亚稳态状态之间的过渡,因此需要动态采样。(ii)当材料在较高的温度下评估或额外的复杂性进入系统时,例如,强烈的非谐度,缺陷或客人物种,谐波制度分解,并且需要动态抽样才能正确预测声子频谱。在本综述中处理的四个案例研究的基础上,我们可以提出以下理论指南,以模拟功能固态材料的准确振动光谱:(i)对于低温下的纳米结构的晶体框架材料,可以使用静态方法在低温下的洞察力,可以使用几个点依靠point of the points of points of point of point of points of point of points points points and points and points and points and points and pote。这些准则及其针对原型材料类别的插图可以帮助实验和理论研究人员增强从晶格动力学研究中获得的知识。
在制药行业中发现药物到营销潜在药物的旅程是一个多方面的过程,需要大量投资并包括各个阶段。在此过程中的一个关键步骤称为HIT鉴定阳离子,其中涉及从大量化合物中识别可以与特定C靶标结合的小分子并引起所需的生物学效应,例如抑制疾病引起蛋白质的活性。1 - 4有几种传统的识别方法,5 - 8,但是DNA编码的图书馆(DEL)筛选技术在近年来在学术和制药行业环境中引起了人们的关注。9 - 14该技术涉及编码具有独特DNA标签的许多小分子并将其暴露于靶蛋白上,从而识别出通过测序其DNA标签选择性结合与蛋白质的分子的鉴定(图1)。