本研究的目的是分析电池储能系统 (BESS) 如何支持包含水力发电厂的孤岛微电网的频率和电压稳定性。对位于瑞典的两个不同的微电网进行了评估。在 PowerFactory 工具中进行建模和动态模拟。结果表明,使用 BESS 可以改善频率和电压控制。但是,在允许的 ± 1 Hz 限制下,并非所有包括 BESS 的模拟场景都符合要求。BESS 和发电机容量之间的巨大差异可能是造成这种情况的原因。通过划分较大的负载以获得较小的负载,可以减少频率偏差。此外,通过根据孤岛模式操作调整系统 PID 参数,可以实现更快的调节。该系统根据主从控制策略运行,水力发电是具有电压控制的主单元,BESS 是具有 PQ 控制的从单元。运行孤岛微电网的能力可以确保向居民和社会的重要功能提供电力。通过利用 BESS 提高电力稳定性,间接减少了 CO 2 的排放。由于 BESS 的成本预计将迅速下降,因此它们将在世界各地得到利用。
摘要在过去十年中,机器学习(ML)对风工程应用引起了极大的兴趣。先前基于机器学习的高层建筑物的基于机器学习的研究主要仅限于时间史或静态压力,而无需考虑空间坐标系。ML模型需要预测空间分布和瞬态风流,以设计风敏的高建筑物。因此,利用三维(3D)空间坐标系统,本研究采用ML来预测高建筑物上的瞬态风压。通过计算流体动态模拟获得了建筑物表面上的瞬态压力数据,这些模拟使用风洞数据验证。选择了极端梯度提升(XGB)模型作为机器学习模型,并且在训练和测试中都获得了良好的预测准确性。此外,在建筑物表面上,XGB模型已经很好地预测了诸如流动分离和陡峭压力梯度之类的独特流动现象。因此,这项工作演示了如何使用机器学习来预测高大建筑物的风负载并捕获重要的流动特征。
监视文档制作的文档 - 纳米颗粒或超级分子结构的设计和合成,具有非病毒载体的潜力或提供主动目标原理的可能性。- 与可能的生物学活性的小分子杂环化合物合成。- 生物相容性和/或可生物降解的低聚物的合成(例如peg和pcl)通过使用受控聚合方法(例如rop)。- 通过调整反应参数并确定所获得的Macuons的高级纯化方法,获得计划应用的最佳培养基质量。- 合成和评估是由双酸配体(三氟粒)形成的聚合物配位化合物的性能 - [1,1':4':4',1'''-trfenil] -4.4''dicarboxylic和过渡金属的盐。- 有机共价网络与4.4-二氨基酯-2,2'-二硫代溶剂和不同或醛的合成。- 通过MRI光谱,IR,DSC和相邻技术的结构表征,作为研究后必要的结果,是对上一阶段获得的小/大分子化合物的必要结果。- 杂环化合物的测试以确定生物学活性。- 分子动态模拟。
摘要。本文使用 Matlab-Simulink 评估了可逆双源热泵 (DSHP) 系统的性能,该系统能够交替利用来自空气和地面的可再生能源。实际利用的能源取决于基于当前外部气温的简单控制策略。通过将 DSHP 与位于博洛尼亚的独立住宅建筑(该建筑的供暖和制冷负荷严重不平衡)以及与埋管换热器 (BHE) 场耦合,进行了年度动态模拟。分析了不同的案例研究,其中修改了埋管场的长度。所得结果表明,可以确定最佳切换温度,以使固定的 BHE 场长度的年度性能因子 (APF) 最大化。此外,已证明地下埋管热泵 (DSHP) 非常有助于缩短地下埋管换热器的总长度,从而降低相关成本,并解决与地温漂移相关的问题(这些问题可能由地下埋管尺寸过小和/或建筑负荷不平衡引起)。因此,在传统的地下埋管热泵系统改造中,如果地下埋管换热器尺寸过小,建议使用 DSHP。
变异量子算法(VQA)如量子近似优化算法(QAOA),变异量子本元素(VQE),量子神经网络(QNN)和量子汇编(QC),可用于求解对噪声中量表量量标准量量表的实用任务(NISQ)的实用任务,这是有希望的。最近的成就证明了量子态制备2 - 6,量子动态模拟2、7-9和量子计量学10-14的有效性。QC,特别是获得了显着的利益。它使用培训过程将信息从未知目标统一转换为可训练的已知统一15,16。此方法具有各种应用,包括盖茨优化15,量子辅助编译16,连续变量的量子学习17,Quantu-State State polagrogrich 18和量子对象模拟2。例如,可以使用QC 2在量子电路中模拟量子对象(例如量子状态)。QC的性能取决于量子数和电路深度的数量。Ansatzes(可训练的量子电路)的选择也至关重要,必须仔细选择。一些纠缠
我们讨论了人们构想人工智能体感知、认知和行动之间关系的方式对机器人和人工智能领域的影响。我们阐明了一种广泛使用的范式,我们称之为孤立感知范式,该范式将感知与认知和行动隔离开来。通过调动哲学(现象学和认识论)和认知科学的资源,并借鉴人工智能领域的最新方法,我们探索了机器人和人工智能与孤立感知范式保持距离意味着什么。我们认为,这种放弃开辟了有趣的方式,以探索设计具有内在动机和构成自主性的人工智能体的可能性。然后,我们提出了人工智能互动主义,我们的方法通过利用交互周期的反转来摆脱孤立感知范式。当交互周期被反转时,输入数据不是直接从环境中接收的感知,而是控制回路的结果。感知并非独立于认知而从传感器接收,而是由认知架构通过交互主动构建的。我们给出了人工交互主义的一个示例实现,展示了动态模拟环境中基本的内在动机学习行为。
作为中央热力学特性,自由能可以计算物理系统的任何平衡性能,从而构建相图以及有关运输,化学反应和生物过程的预测。因此,通常是一个很难的问题,这是物理和自然科学领域的极大兴趣。大多数用于计算自由能的技术目标经典系统,从而使量子系统中的自由能的计算减少了。最近发出的波动关系可以从动态模拟集合中计算量子系统中的自由能差异。在经典计算机上执行此类模拟时,量子计算机很难成倍地模拟量子系统的动力学。在这里,我们提出了一种利用称为jarzynski平等的频率关系来近似量子计算机上量子系统的自由能差异的算法。我们讨论了我们的近似条件确切的条件,在哪些条件下作为严格的上限。此外,我们成功地使用了实际量子处理器上的横向场模型来证明我们的算法概念概念。随着量子硬件的不断改善,我们预计我们的算法将对整个自然科学有用的各种量子系统进行自由能差的计算。
所有收集和地理位置的数据都在Web应用程序中可视化,尤其是通过不同的编程语言开发的地理查看器(例如php,HTML 5,CSS),在地质项目期间,允许以交互式三维图形格式的所有多参数和解释数据的整合。该软件可自定义,具有多种工具和功能,还可以在提取“绿色”能量的过程中显示储层的动态模拟,以更有效,更可持续地使用资源[4]。该软件是一种工具,旨在改善地热源的评估和可持续使用,但是由于其多功能性,它也可以通过显示动态3D物理过程的动态3D组件(水流,热量,热变量,盐分等)来用于其他地下研究目的。云技术允许多个用户同时使用该软件,而无需安装,确保兼容,可用性和更新。Geogrid查看器及其用户友好的接口适应了不同的显示器,它具有创新性,因为:1)它可以快速加载预处理的三维地理数据,并在标准或矢量格式中导出的交互式3D模型; 2)它提供了通过唯一的颜色尺度可视化特定复杂查询的多参数数据的可能性,以获得对各种数据集的解释的集成和连贯的视图。
摘要 二维 (2D) 范德华过渡金属磷三硫属化物家族由于其固有的 2D 反铁磁性而重新引起了人们的关注,这证明它们是单层极限下自旋电子学和磁子学中前所未有且高度可调的构建块。在此,受 Janus 过渡金属二硫属化物中表现出的原子取代潜能的启发,我们从第一性原理研究了基于 MnPS 3 和 NiPS 3 的硒化 Janus 单层的晶体、电子和磁性结构。此外,我们计算了磁振子色散并进行实时实空间原子动态模拟,以探索自旋波在 MnPS 3 、NiPS 3 、MnPS 1.5 Se 1.5 和 NiPS 1.5 Se 1.5 中的传播。我们的计算预测磁各向异性将大幅增强,并会出现较大的 Dzyaloshinskii-Moriya 相互作用,这是由于 2D Janus 层中诱导的反演对称性破缺所致。这些结果为开发 Janus 2D 过渡金属磷三硫属化物铺平了道路,并凸显了它们在磁子应用方面的潜力。
住宅建筑占意大利建筑环境的84%,在欧盟的目标中发挥了关键作用,旨在通过增强的能源效率和气候适应来将温室气体排放量减少55%。这需要全面的能源改造计划,尤其是在社会住房等领域,这在能源效率策略方面被相对忽视。这项研究重点是1980年代在罗马的一栋多层建筑,实施了由欧洲重新修复项目提出的创新能源系统。该系统旨在标准化20世纪末期社会住房的能源改造,利用了水源热泵(WSHP)系统的不足之路。这项研究的新颖性扩展到了对多户住房的检查,与公共空间和较小的住宅建筑相比,该部门的关注较少。通过使用TRNSYS和SIMULINK的实验验证和年度动态模拟,该研究将现有的加热系统与包括WSHP和光伏热(PVT)面板的拟议升级进行了比较。此升级显示出显着提高的效率,WSHP的年度COP为6.1,PVT面板的初级节能(PES)36%,展示了这些技术在增强多户住宅建筑的能量概况方面的有效性。