测量细胞的物理尺寸对于了解细胞生长控制很有价值。目前用于哺乳动物细胞的单细胞体积测量方法劳动密集、不灵活且可能导致细胞损伤。我们引入了 CTRL:细胞拓扑重建学习器,这是一种无标记技术,结合了深度学习算法和荧光排除方法,仅从微分干涉对比 (DIC) 显微镜图像中重建细胞拓扑并估计哺乳动物细胞体积。该方法实现了定量准确性,需要的样品制备最少,并且适用于广泛的生物和实验条件。该方法可用于跟踪任意长时间段内的单细胞体积动态。对于 HT1080 纤维肉瘤细胞,我们观察到分裂时的细胞大小与出生时的细胞大小 (sizer) 呈正相关,并且在 HT1080 纤维肉瘤细胞中,在细胞周期完成 25% 时,细胞大小波动明显减少。
该讲座系列概述了计算机视觉技术的最新进展,因为它们适用于民用基础设施条件评估问题。特别是在计算机视觉,机器学习和结构工程领域的相关研究合成,以提供新课程。所涵盖的主题分为三个主要类别:监视应用程序,空间测量应用程序和检查应用程序。讨论的监视应用程序包括应变和位移的静态测量,以及模态分析的位移的动态测量。空间测量应用包括3D重建资产重建的运动和摄影测量的结构。所涵盖的检查应用程序包括计算机视觉和深度学习方法,用于识别诸如结构组件,表征本地和全球可见损害以及检测参考图像的变化的上下文。
对于大多数制造业的供应链而言,关键在于测量和校准是否可追溯且可靠,这反过来又会影响其生产力、效率和完整性,也就是说,无法追溯到通用标准的测量是不可靠的,供应商无法保证其产品符合制造商的规格。未来工厂环境中的许多测量系统仅提供预处理数据的数字输出,校准信息通常很少。然而,需要可靠的信息来评估数据质量。这可以通过开发分布式传感器网络的校准框架来解决,该框架能够将来自单独校准的传感器的测量不确定度推断到动态测量环境中相同类型的其他单个传感器。因此,需要开发用于校准工业传感器网络和数据聚合的方法,以及建立通用标准和指南并商定参考计量基础设施。
对于大多数制造业的供应链而言,关键在于测量和校准是否可追溯且可靠,这反过来又会影响其生产力、效率和完整性,也就是说,无法追溯到通用标准的测量是不可靠的,供应商无法保证其产品符合制造商的规格。未来工厂环境中的许多测量系统仅提供预处理数据的数字输出,校准信息通常很少。然而,需要可靠的信息来评估数据质量。这可以通过开发分布式传感器网络的校准框架来解决,该框架能够将来自单独校准的传感器的测量不确定度推断到动态测量环境中相同类型的其他单个传感器。因此,有必要开发用于校准工业传感器网络和数据聚合的方法,以及建立通用标准和指南并商定参考计量基础设施。
对于大多数制造业的供应链而言,关键在于测量和校准是否可追溯且可靠,这反过来又会影响其生产力、效率和完整性。无法追溯到通用标准的测量结果不可靠,供应商无法保证其产品符合制造商的规格。未来工厂环境中的许多测量系统仅提供预处理数据的数字输出,校准信息通常很少。但是,需要可靠的信息来评估数据质量。可以通过开发分布式传感器网络的校准框架来解决此问题,该框架能够将来自单独校准的传感器的测量不确定度推断到动态测量环境中相同类型的其他单个传感器。因此,需要开发用于校准工业传感器网络和数据聚合的方法,以及建立通用标准和指南并商定参考计量基础设施。
对于大多数制造业的供应链而言,关键在于测量和校准是否可追溯且可靠,这反过来又会影响其生产力、效率和完整性,也就是说,无法追溯到通用标准的测量是不可靠的,供应商无法保证其产品符合制造商的规格。未来工厂环境中的许多测量系统仅提供预处理数据的数字输出,校准信息通常很少。然而,需要可靠的信息来评估数据质量。这可以通过开发分布式传感器网络的校准框架来解决,该框架能够将来自单独校准的传感器的测量不确定度推断到动态测量环境中相同类型的其他单个传感器。因此,有必要开发用于校准工业传感器网络和数据聚合的方法,以及建立通用标准和指南并商定参考计量基础设施。
对于大多数制造业的供应链而言,关键在于测量和校准是否可追溯且可靠,这反过来又会影响其生产力、效率和完整性,也就是说,无法追溯到通用标准的测量是不可靠的,供应商无法保证其产品符合制造商的规格。未来工厂环境中的许多测量系统仅提供预处理数据的数字输出,校准信息通常很少。然而,需要可靠的信息来评估数据质量。这可以通过开发分布式传感器网络的校准框架来解决,该框架能够将来自单独校准的传感器的测量不确定度推断到动态测量环境中相同类型的其他单个传感器。因此,有必要开发用于校准工业传感器网络和数据聚合的方法,以及建立通用标准和指南并商定参考计量基础设施。
工程背景和上下文 该计划的工程测量部分(质量;力;动态;尺寸测量)由于 NMS 计划组合的重组而经历了重新调整,其中三个项目转移到新的 NMS 创新研发计划,两个项目转移到 NMS 探路者计划,此外 NPL 科学战略也发生了变化。与动态测量、先进传感器计量以及(非)多孔材料的质量和密度相关的项目被纳入创新研发计划,而与瓦特天平和阿伏伽德罗对千克的重新定义相关的项目则被纳入探路者计划。进一步的变化反映了 NPL 科学战略提案,该提案由 NMS 批准(在与测量咨询委员会 - MAC 协商后),其中撤回了对某些科学领域的资助,以便集中资源,确保在预算减少的情况下从 NMS 组合中获得最大影响。主要变化是取消了对硬度、真空、静压研究和扭矩测量的资助。回顾2005-2008年工程计划,该计划的组成如图1所示。
足球经理必须做出的最重要的战术决策之一是确定比赛不同阶段球队的空间配置或阵型。阵型的选择会影响球队的进攻力度、进攻重点以及整体比赛风格。我们提出了一种创新的新技术,用于动态测量、分类和研究职业足球比赛中的球队阵型。使用大量球员跟踪数据样本,我们测量每场比赛期间连续时间间隔内每支球队球员在控球和失球时的相对位置。应用分层聚集聚类(使用 Wasserstein 度量来测量阵型之间的距离),我们确定了球队部署的独特进攻和防守阵型。我们使用这些阵型模板,结合贝叶斯模型选择标准,对新的阵型观察进行分类,生成每场比赛的战术摘要。我们确定每支球队首选的进攻和防守阵型,并研究经理在比赛中如何对关键事件做出战术反应。最后,我们讨论阵型选择与比赛风格的关系,并讨论我们的方法的其他潜在应用。