• 动态补偿、突变抗性和 2 型糖尿病 • 应激激素轴作为双腺振荡器 • 甲状腺及其不满 • 自身免疫性疾病作为突变监视的脆弱性 • 炎症和纤维化作为双稳态系统 • 衰老的基本事实 • 衰老和饱和修复 • 与年龄相关的疾病 • 其他疾病的案例研究 • 医学作为控制机制 • 精准医疗和靶向治疗
• 频率响应 • 伯德增益和相位图 控制系统分析和设计 • 传递函数、框图和信号流图 • 稳定性分析、瞬态性能、稳态误差 • 劳斯稳定性标准 • 根轨迹技术 • PI、PD 和 PID 控制器 • 极点和零点对系统响应的影响、极点-零点抵消 控制系统的频域分析和设计 • 伯德增益和相位图 • 增益和相位裕度、相对稳定裕度、稳健性 • 超前和滞后动态补偿 • 奈奎斯特图和奈奎斯特稳定性标准 矩阵数学 • 矩阵分解(Jordan、Schur、奇异值) • 非负定矩阵和正定矩阵 • 矩阵范数、广义逆 • 矩阵指数
GRIDCON ® ACF 工业版是具有挑战性的补偿任务的首选,这些任务需要可靠性和安全性,例如,甚至在超出正常工作电压和具有挑战性的环境条件下:I 可在满功率下运行高达 690 V 或更高电压,而无需降容I 额定电流可以以模块化方式从 125 A 扩展到 3,000 A,例如用于 STATCOM 系统I 高功率密度和紧凑设计I 低损耗I 非常耐用的薄膜电容器I 过电压类别 III 高达 1000 V - 即使在具有隔离中性点的电网中(IT 网络配置)I 防护等级可达 IP 54,可选外部水冷以实现完全封装I 动态补偿无功功率、谐波和闪变,以及在一个单元中平衡负载
BIEG 5301 反馈控制系统 3 学分 本课程强调使用经典和状态空间方法对闭环控制系统进行分析和综合,重点是机电系统。数学要求包括解决微分方程的拉普拉斯变换方法、矩阵代数和基本复变量。经典控制系统设计的讨论包括动态系统建模、框图表示、时间和频域方法、瞬态和稳态响应、稳定性标准、控制器动作 [比例 (P)、比例和积分 (PI)、比例、积分和微分 (PID) 和伪微分反馈]、根轨迹方法、奈奎斯特和波德方法以及动态补偿技术。状态空间方法的讨论包括状态方程的制定和求解(分析和基于计算机)以及极点位置设计。本课程整合了计算机辅助分析和设计工具 (MATLAB) 的使用,以确保与现实世界控制的机电系统的设计相关,使用案例研究和电气和机械系统的应用。包括 PID 控制系统的动手实验室(基于硬件)探索。本科同等学历:ENGR 4301。以前为 ME 0400。
因素要求总功率因数范围应为互连设施(连接到 PREPA TC 或分段器)处滞后 0.85 到超前 0.85。无功功率要求是根据电压曲线和无功功率需求为系统运行提供支持所必需的。目的是 PVF 可以在互连设施(连接到 PREPA TC 或分段器)处以平滑连续的方式将无功功率从滞后 0.85 提升到超前 0.85。互连设施(连接到 PREPA TC 或分段器)处的 +/- 0.85 功率因数范围应是动态和连续的。这意味着 PVF 必须能够通过在规定的限制内连续改变电厂的无功输出来响应电力系统电压波动。如果研究表明需要额外的连续动态补偿,则可以扩大先前确定的功率因数动态范围。要求 PVF 无功能力满足 +/- 0.85 功率因数 (PF) 范围,该范围基于 PVF 聚合 MW 输出,即与最大 MW 输出相对应的最大 MVAr 能力。众所周知,正 (+) PF 是 PVF 产生 MVAr 的地方,而负 (-) PF 是 PVF 吸收 MVAr 的地方。最大输出下的 MVAr 能力要求应在 PVF 的整个运行范围内保持,如图 2 所示。MVAr 能力还应在整个互连设施(连接到 PREPA TC 或分段器)电压调节范围内(互连设施额定电压的 95% 至 105%)保持。