对不断提高飞机性能的需求导致了飞行控制系统的引入,而现在这些系统已经变得非常复杂。通常应用的控制设计方法(例如增益调度、动态逆)需要精确的系统动态模型,并使用数值和实验方法进行复杂的空气动力学分析,并进行远远超出确保符合法规要求的飞行测试。随着模块化无人机的普及,需要快速、更便宜、可扩展的设计方法,从而导致自调节、自适应控制器领域的出现。自适应控制器不需要精确的工厂模型,它们可以根据配置偏差和飞行条件进行调整。这样可以增强控制系统的稳健性。自适应控制器的设计成本较低,并且可以轻松定制已经应用的控制器以适应给定飞机配置的要求。本文选择了模型识别自适应控制(MIAC,也称为间接自适应控制)框架(而不是更常用的模型参考自适应控制),因为它的适用范围更广(可以容纳任意零极点位置)并且可以分阶段引入。一旦确定模型识别的正确操作,就可以应用在线控制重新设计来完成自适应。本文的目的是研究 MIAC 对非线性多输入多输出 (MIMO) 系统的适用性,主要关注识别和参数自适应,这将导致自适应控制设计。对于
本文提出了一种用于柔性飞机同时进行轨迹跟踪和负载减轻的非线性控制架构。通过利用控制冗余,可以在不降低刚体指令跟踪性能的情况下减轻阵风和机动负载。所提出的控制架构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低传统滑模控制方法的模型依赖性和最小可能增益。此外,姿态动力学为严格反馈形式;因此采用增量反步滑模控制。此外,还设计了一种新型负载参考生成器,用于区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点
本文提出了一种用于柔性飞机同时进行轨迹跟踪和载荷减轻的非线性控制结构。通过利用控制冗余,在不降低刚体指令跟踪性能的情况下减轻了阵风和机动载荷。所提出的控制结构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低模型依赖性和传统滑模控制方法的最小可能增益。此外,姿态动力学为严格反馈形式,因此采用增量反步滑模控制。此外,设计了一种新型负载参考生成器,以区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间冯·卡门湍流场中的轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点。
本文提出了一种用于柔性飞机同时进行轨迹跟踪和载荷减轻的非线性控制结构。通过利用控制冗余,在不降低刚体指令跟踪性能的情况下减轻了阵风和机动载荷。所提出的控制结构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低模型依赖性和传统滑模控制方法的最小可能增益。此外,姿态动力学为严格反馈形式,因此采用增量反步滑模控制。此外,设计了一种新型负载参考生成器,以区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间冯·卡门湍流场中的轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点。