抽象协调的动物运动取决于功能前置体的发展。虽然早期的细胞效果确定过程是充分表征的,但对本体感受谱系中细胞的终末分化以及控制它们的遗传网络的终极分化知之甚少。在这项工作中,我们描述了一个基因调节网络,该网络由三个转化因子(Prospero(pros),D-PAX2和Delilah(DEI)组成,这决定了果蝇中的本体感受谱系中的两个替代分化程序。我们表明,D-Pax2和ProS分别通过激活和抑制DEI的转录来控制脊柱器官谱系中盖与scolopale细胞的分化。通常,D-PAX2激活了DEI在上限电池中的表达,但在Pros被共表达的Scolopale细胞中无法进行。我们进一步表明,D-Pax2和Pro通过262 bp核核定特异性增强剂对DEI转录产生影响,其中两个D-PAX2-和三个Pros结合位点实验鉴定出来。从蝇基因组中除去该增强子时,DEI的帽和韧带特异性表达丢失,从而导致核核器官功能的丧失和幼体幼虫的不良运动。因此,协调的幼虫运动取决于DEI增强子的活性,该活性同时整合了动作和抑制性输入,以生成功能性前置的器官。
我们作为社区大学受托人必须练习和证明的领导类型与生成AI基于聊天的界面一样复杂:基于获得的知识和高级推理能力的结合,输出背后是无数计算。人工智能现在是如此无所不在,如此令人生畏,以至于理解我们值得我们反思智力本身的本质是值得的。智能是“学习,理解或处理新的或尝试的情况的能力”,“熟练使用理性”或“应用知识来操纵环境或通过客观标准(例如测试)衡量的知识的能力”,根据Merriam-Webster Dictionary的说法。除了定义,智力的概念是一个复杂的概念 - 当我们努力以智能管理我们的大学时,要牢记的事情。任何新手董事会服务的人都知道,一个人的学习和理解能力都会受到无数因素的测试 - 大学系统的动态,议会程序的动态,存在的政策以及制定政策的制定,甚至是基本角色,责任,责任以及董事会首席执行官的局限性。处理新的和尝试的情况?董事会服务在这方面永远不会挑战我们。我们获得并组装所有这些知识后,我们必须熟练,明智地运用我们的理由。我们必须能够评估,例如,政策和领导决定的合理政策和领导决定程度,多少
(人工)神经网络在力学和材料科学领域越来越受欢迎,它利用模型降阶技术加速计算,并作为各种材料的通用模型。然而,神经网络的主要缺点仍然存在:它们的众多参数难以解释和解释。因此,神经网络通常被称为黑匣子,其结果往往难以人类解释。物理信息神经网络这一新兴的活跃领域试图通过基于机械知识设计深度神经网络来减轻这一缺点。通过利用这种先验知识,更深层、更复杂的神经网络变得可行,因为机械假设可以得到解释。然而,神经网络参数的内部推理和解释仍然是个谜。作为物理信息方法的补充,我们提出了迈向物理解释方法的第一步,该方法对在机械数据上训练的神经网络进行后验解释。这种概念验证可解释的人工智能方法旨在阐明神经网络的黑匣子及其高维表示。其中,主成分分析将 RNN 单元状态中的分布式表示去相关,并允许与已知和基本函数进行比较。这种新方法由系统超参数搜索策略支持,该策略可识别最佳神经网络架构和训练参数。三个关于基本本构模型(超弹性、弹塑性和粘弹性)的案例研究的结果表明,所提出的策略可以帮助识别数值和分析闭式解来表征新材料。
来自美国华盛顿特区乔治华盛顿大学医学院儿童国家医院神经科学研究中心 (NTC、WDG);伦敦大学学院 NIHR BRC 大奥蒙德街儿童健康研究所 (JHC),ERN-EpiCARE 成员;伦敦 NHS 信托大奥蒙德街儿童医院 (JHC);英国萨里郡灵菲尔德青年癫痫中心 (JHC);儿科临床癫痫病学 (AA) 系、睡眠障碍和功能神经病学,ERN-EpiCARE 成员;法国里昂临终关怀院 HFME (AA);巴塞罗那圣胡安德迪奥斯儿童医院癫痫研究组 (AA),ERN EpiCARE 成员,西班牙;澳大利亚墨尔本大学癫痫研究中心 (SFB);菲尼克斯儿童医院巴罗神经病学研究所儿科神经病学分部 (JFK);亚利桑那州菲尼克斯市下丘脑错构瘤希望基金会(IPM、EW、LS);巴西圣保罗癫痫诊所癫痫手术项目(AC);纽约州纽约市哥伦比亚大学医学中心流行病学系(DKH);马里兰州罗克维尔 RTI 国际(BLK);马萨诸塞州波士顿哈佛医学院贝斯以色列女执事医疗中心神经内科系(CBS);德国弗莱堡大学医学中心医学院癫痫中心(AS-B.)。
近年来,变形金刚[9]在各种计算机视觉任务[10],[11],[12],[13]中表现出了不前期的成功。变压器的能力长期以来一直归因于其注意力模块。因此,已经提出了许多基于注意力的令牌混合器[4],[5],[14],[15],[16],目的是为了增强视觉传输(VIT)[11]。尽管如此,一些工作[17],[18],[19],[20],[21]发现,通过用空间MLP [17],[22],[23]或傅立叶变换[18]等简单操作员更换变压器中的注意模块,结果模型仍然会产生令人鼓舞的性能。沿着这条线,[24]将变压器摘要为一种称为元构造器的通用体系结构,并假设是元构造者在实现竞争性能中起着至关重要的作用。To verify this hypothesis, [24] adopts embarrassingly simple operator, pooling, to be the token mixer, and discovers that PoolFormer effectively outperforms the delicate ResNet/ViT/MLP-like baselines [1], [2], [4], [11], [17], [22], [25], [26], which con- firms the significance of MetaFormer.