摘要得益于医学和技术的改进,我们的世界人口变得越来越大。因此,与年龄相关的中枢神经系统神经病(如阿尔茨海默氏症(AD)和帕金森氏病(PD))的发病率和流行率大大增加。尽管进行了许多研究工作,但这些与年龄相关的神经退行性疾病的精确病因仍然难以捉摸,这强调了对更有效治疗的迫切需求。当前的临床前研究主要使用的动物模型并未完全概括发生这些疾病的复杂细胞环境,从而缺乏良好的构造有效性。的确,大多数研究都是使用相对年轻的动物进行的,从而忽略了神经退行性疾病表现出的衰老环境。这指出了当前研究中的一个主要中断:一种将复杂疾病环境(发作,扩散,进一步表现为功能障碍)与衰老环境相结合的脊椎动物模型生物体。近年来,非洲绿松石Killifish已成为一种有前途的新型动物模型,用于研究结合这些基本特征的年龄相关的神经退行性疾病。在这篇综述中,我们将所有报告的发现都捆绑在一起,并详细概述了该Teleost Fish的中枢神经系统中的神经退行性事件,重点是PD。
创伤性脑损伤(TBI)是全球主要的健康问题,越来越多地被认为是包括阿尔茨海默氏病(AD)和慢性创伤性脑病(CTE)在内的神经退行性疾病的危险因素。重复TBI(RTBI)通常在接触运动,兵役和亲密伴侣暴力(IPV)中观察到,对长期后遗症构成了重大风险。为了研究TBI和RTBI的长期后果,研究人员通常使用哺乳动物模型来概括脑损伤和神经退行性表型。然而,这些模型有几个局限性,包括:(1)长期观察期,(2)高成本,(3)关于大量哺乳动物的长时间和重复伤害的遗传操作困难和(4)(4)(4)道德问题。水生脊椎动物模型有机体,包括petromyzon Marinus(海lampreys),斑马鱼(Danio Rerio)和无脊椎动物,Caenorhabditis elegrans(C. exkelelans)和Drosophila Melanogaster(果蝇)(Drosophila Melanogaster(Drosophilla)),都是有价值的工具,可作为调查机械和r. r. r. r. r.s rytbi的工具。这些非哺乳动物模型提供了独特的优势,包括遗传障碍性,简单的神经系统,成本效益以及基于发现的快速方法和用于治疗剂的高通量筛选,从而促进了RTBI诱导的神经变性的研究和与TAU相关的病理学。在这里,我们探讨了非掌管和水生脊椎动物模型的使用来研究TBI和神经变性。果蝇特别提供了一个机会,可以探索轻度RTBI及其对内源性tau的纵向影响,从而对RTBI,Tauopathy和NeuroDegeneration之间的复杂相互作用提供了宝贵的见解。这些模型为机械研究和治疗干预提供了一个平台,最终促进了我们对与RTBI相关的长期后果以及潜在的干预途径的理解。
摘要:脊椎动物的基底神经节在动作选择中起着重要作用,这是替代运动程序之间冲突的解决方案。也已知基底神经节电路的有效操作依赖于适当水平的神经递质多巴胺。,我们研究了在以前的基底神经节模型中降低或增加模拟多巴胺的补品水平,该模型集成到了由动物行为启发的觅食任务中的机器人控制结构中。主要发现是,模拟多巴胺水平的进行性降低导致行为减慢,并且在低水平下无法启动运动。这些状态因显着水平的提高而部分缓解(更强的感觉/动机输入)。相反,增加的模拟多巴胺通过与丢失作用有关的部分表达的运动活动引起了机器人运动作用的扭曲。这也可能导致行为切换的频率增加。模拟多巴胺的水平显着降低或高于基线可能会导致行为整合的丧失,有时将机器人留在“行为陷阱”中。在受多巴胺失调影响的动物和人类中观察到某些类似的性状表明,机器人模型可以证明可用于理解多巴胺神经传递在基底神经节功能和功能障碍中的作用。
Blanchard等人研究的活捕食者暴露。(1990)仍然是检查动物在数十年中检查压力诱导的改变的重要方法。基本的前提是,捕食者在猎物物种中遇到了捕食者的恐惧回路,从而导致一系列特定于物种的防御行为,这些行为进化出来,以确保面对掠夺性威胁的动物的生存。一种假设是,人类中各种形式的心理病理学可能代表对威胁刺激的恐惧反应,或者对客观上不威胁的情况的“常规”恐惧反应(Bakshi等,2000)。因此,捕食者的压力代表了研究临床前模型中对威胁的不良适应性和适应性反应的重要工具。在这里,我们总结了我们小组在大鼠中暴露的捕食者暴露的工作,描述了在各个发育阶段暴露的神经底物和行为后遗症。我们还确定可以贡献的机制
pgag =“病理堵嘴”,用于通过非还原端(NRE)方法测量的特定GAG的上一个术语。此处使用的方法仅测量HS。gag用肝素裂解酶消化,并标记为NRE,然后通过HPLC测量。it2,3,4:每月术中ERT(Cisterna Magna)
1分子心脏病学研究所,医学院,大学医院,海因里希海大学,德国40225杜塞尔多夫; patricia.kleimann@uni-duesseldorf.de(p.k.); floegel@uni-duesseldorf.de(U.F.)2辐射肿瘤学,医学院,大学医院,海因里希海因大学,德国40225杜塞尔多夫; lisa-marie.irschfeld@med.uni-duesseldorf.de 3转化药理学研究所,医学院医院,海因里希 - 海因大学,40225杜塞尔多夫,德国; maria.grandoch@uni-duesseldorf.de 4心血管研究研究所杜塞尔多夫(Carid)(Carid),大学医院,40225杜塞尔多夫,德国5 5düsseldorf,5 5düsseldorf,5 5 d d d d ddüselliversity的大学医院麻醉学系,大学医院,40225Düseldorf,dermany * sebastian.temme@uni-duesseldorf.de;电话。: +49-221-05100
结果:我们的第一个至关重要的发现是,除了引起翻译变化的变体外,与饮酒前的饮酒相关的主要遗传变化也称为“沉默突变”和3'未翻译区域(3'UTR)中的突变。这些都没有改变所翻译的氨基酸序列,而是影响基因转录的速率和构象,包括改变基因疗效的稳定性和翻译后事件。这一发现提倡在人类基因组研究中重新聚焦基因效能感的变化。在确定的关键本体论中是“疼痛的伤害感受或感觉感知”,它不仅包含伤害感受(ARRB1,CCL3,EPHB1),而且还伴有钠(SCN1A,SCN1A,SCN2A,SCN2B,SCN2B,SCN3A,SCN3A,SCN7A,SCN7A),SCN7A),SCN99A(SCN9A9A)(kc N9aa)(KC)和POTASS(kc)。
动物模型是针对许多人类疾病开发的,包括心血管,呼吸道,肝,肾脏,眼科,代谢,神经系统,神经退行性,神经精神病学,感染弹药和感染性疾病或状况。他们的使用对于开发大量人类疾病和测试可植入设备的治疗方法至关重要。虽然单一动物模型可能未显示不同人类疾病的所有主要病理生理变化,但它们是在进行临床试验之前研究治疗策略的最有价值的工具。细胞培养和分子生物学研究用于支持动物模型使用的发现。选择性育种,遗传修饰和分子成像的进步提供了更好地了解疾病过程和对可能的新干预措施的见解。有几个领域,未来使用动物模型的研究可以为理解疾病过程和可能的新治疗策略做出重要贡献。
尊敬的编辑,人工智能(AI)有可能通过为未来的医生提供最新的技术进步来彻底改变医学教育(1,2)。研究探讨了如何将AI集成到教育框架中,例如手术技能培训和基于病例的学习。一些研究重点介绍了AI在医学教育中的实际应用,例如通过模拟和评估使用AI驱动的机器人系统进行技能开发和知识获取(3,4)。但是,实施这些变化时存在挑战。尽管面临这些挑战,AI技术通过赋予医疗保健专业人员并改善患者护理结果来提供巨大的潜在收益(5)。为了充分意识到这些好处,有必要在医学课程中继续探索和采用AI。给编辑的这封信旨在探索与在医学教育中使用AI相关的机遇,挑战和道德问题。机会1。人工智能驱动的虚拟患者人工智能可用于为医学生创建虚拟患者,以练习诊断和治疗各种疾病。这为学生提供了一个安全且受控的环境,可以学习和犯错,而没有任何现实世界的后果(6)。2。基于人工智能的人体模型基于人工智能的机器人可以充当医学教育的人体模型。基于人工智能的医学教育将机器人用作人体模型,模拟场景,功能
阿尔茨海默氏病(AD)和阿尔茨海默氏病有关的痴呆症(ADRD)是痴呆症的主要原因,对生活质量具有毁灭性影响,并且对医疗保健系统是巨大的经济负担。大脑中细胞外β-淀粉样蛋白(Aβ)斑块和细胞内的高磷酸化神经原纤维缠结(NFT)的积累是AD的标志。他们也被认为是AD随附的炎症,神经退行性,脑萎缩和认知障碍的根本原因。发现APP,PS1和PS2突变的发现,这些突变会增加具有早期发作家族AD的家族的Aβ产生,从而发展了许多AD的转基因啮齿动物模型。这些模型为Aβ在AD中的作用提供了新的见解。但是,它们没有完全复制患者的AD病理。家族性AD患者具有升高Aβ产生的突变的家族性AD患者仅占痴呆症患者的一小部分。相比之下,患有零星的晚期AD的人构成了大多数病例。这一观察结果以及先前针对Aβ或TAU的临床试验的失败以及使用Aβ单克隆抗体的最新试验的适度成功,导致重新评估了Aβ积累是AD发病机理的唯一因素。最近的研究表明,脑血管功能障碍是AD中最早的变化之一,与AD相关的候选基因中有67%在脑血管中表达。因此,对AD的血管贡献越来越多,美国国家衰老研究所(NIA)和阿尔茨海默氏病基金会最近将其优先为重点研究领域。本综述总结了最常用的转基因AD动物模型的优势和局限性,以及有关Aβ积累与脑血管功能障碍在AD发病机理中的贡献的当前观点。