摘要背景:骨肉瘤是一种高度转移性的原发性骨肿瘤,主要影响青少年和年轻人。骨肉瘤的主要治疗方法是切除原发肿瘤。然而,手术切除本身与促进肿瘤生长和转移有关,这种效应被称为手术加速转移。导致手术加速转移的潜在机制仍不清楚,但巨噬细胞功能的促肿瘤发生改变已被证实与此有关。方法:使用 K7M2-BALB/c 同系小鼠骨肉瘤模型研究手术对转移、巨噬细胞表型和总体生存的影响。利用吉非替尼(一种受体相互作用蛋白激酶 2 抑制剂,先前已证明可促进抗肿瘤巨噬细胞表型)研究了手术加速转移的药物预防。结果:手术切除原发肿瘤导致肺转移表面结节、总体转移负担和微转移灶数量增加。这种术后转移增强与肺内巨噬细胞表型转变为更有利于肿瘤的状态有关。吉非替尼治疗可防止巨噬细胞表型发生肿瘤支持性改变,从而减少转移。切除原发肿瘤并联合吉非替尼治疗可提高中位生存期和总生存期。结论:手术加速转移部分由巨噬细胞表型发生肿瘤支持性改变所介导。可在围手术期使用靶向药物疗法来防止巨噬细胞表型发生肿瘤支持性改变,以减轻手术加速转移并提高手术的治疗效果。
结果:干预后,Ig的空腹血糖(FPG)和总胆固醇(TC)的降低大于CG(P <0.05),而Ig中的糖基化血清蛋白(Gsp)的降低几乎比CG中的糖基化血清蛋白(Gsp)更大(P = 0.066)。Ig中的总蛋白(TP),白蛋白(ALB)和肌酐(CREA)水平显着降低,Ig中的降低比干预后的CG(P <0.05)大。干预后Ig中Ig中的ACE和CHAO1指数略高于基础线(分别为p = 0.056和0.052)。在Ig干预后,肌动杆菌,lachnospileceae,二杆菌科和phascalcoltctocterium的丰度显着增加(p <0.05)(p <0.05),并且Ig的丰度高于CG(p <0.05或p <0.05或p <0.1)。与FPG(p <0.05),梭菌,梭形梭菌和lachnospiraceae的丰富度与GSP(P <0.05)负相关(p <0.05),并且与两者呈阳性相关(p <0.05)。在干预过程中未观察到不良事件。
转基因依赖于使用大型复杂的表达载体,在病毒或组织特异性哺乳动物启动子的控制下,通过显微注射将载体递送到原核阶段受精卵中,从而指导互补 DNA (cDNA) 的表达(图 1)。虽然这种方法提供了一种粗略但有效的方法来设计表达报告基因、基因突变形式和条件调控基因的动物模型,但它不能用于精确修改内源基因。此外,转基因在小鼠基因组内的整合是随机发生的,整合位点的位置以及整合的次数可能会影响转基因的表达。此外,如果转基因整合破坏了基因或转录调控元件,整合位点本身可能会诱导其自身的表型。由于转基因整合位点和转基因整合次数可能因小鼠而异,因此需要扩展多个创始者并检查转基因表达水平和由此产生的表型 [1]。
导致脑瘫 (CP) 的新生儿脑损伤是儿童肌张力障碍的最常见原因,肌张力障碍是一种痛苦且功能性衰弱的运动障碍。罕见的单基因肌张力障碍病因与纹状体胆碱能中间神经元 (ChI) 病理有关。然而,目前尚不清楚纹状体 ChI 病理是否也与新生儿脑损伤后的肌张力障碍有关。我们使用无偏立体学来估计新生儿脑损伤啮齿动物模型中的纹状体 ChI 和小清蛋白阳性 GABA 能中间神经元 (PVI) 数量,该模型显示出肌张力障碍和痉挛的电生理标志。新生儿脑损伤后,纹状体 ChI 数量增加,而 PVI 数量保持不变。这些数字与肌张力障碍严重程度的电生理测量值无关。这表明,尽管存在纹状体 ChI 病理,但可能不是新生儿脑损伤后肌张力障碍的主要病理生理因素。在肌张力障碍性脑性瘫痪的情况下,纹状体 ChI 数量的增加可能代表一种乘客现象或保护现象。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
抽象的wependinnon-human灵长类动物(NHP),地中海消费术使乳房和乳房中乳酸杆菌的比例丰度转移了。此数据突出了有关肠乳腺微生物组互连的潜在联系。为了解决这个问题,我们比较了NHP研究中匹配的乳房和粪便样品中发现的细菌种群。饮食模式在两个地区同时改变了两个物种; lutetiensis链球菌和Ruminococcus Torques。当我们观察到乳房和肠道中乳酸杆菌丰度的类似趋势时,每个区域中鉴定出的物种都会有所不同。地中海饮食增加了乳房中乳酸杆菌的未指定物种,但在肠道中调节了动物乳杆菌和L. reuteri。我们还研究了肠道渗透性对乳房微生物组的影响。无论饮食模式如何,表现出肠道通透性的生理测量的受试者(血浆脂多糖升高,绒毛长度降低和杯状细胞减少)显示出明显不同的乳腺微生物组。肠道屏障功能障碍与乳腺组织中α多样性增加和显着不同的β多样性有关。一起,我们的数据支持乳房微生物组的存在受饮食影响,而饮食很大程度上与肠道微生物组的种群不同,但对肠道渗透性敏感。
[3] Cho J, Parks ME, Dervan PB. Cyclic polyamides for identification in the minor groove. Proc Natl Acad Sci USA, 1995, 92: 10389-92 [4] Shen B, Zhang J, Wu H, et al. Generation of gene- modified mice via Cas9/RNA-mediated gene hunting. Cell Res, 2013, 23: 720-3 [5] Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods, 2013, 10: 957-63 [6] Wang H, Yang H, Shivalila CS, et al. One-stepgeneration of mice carrymutations in multiple genes by CRISPR/Cas-mediated gene engineering. Cell, 2013, 153: 910-8 [7] Wood AJ, Lo TW, Zeitler B, et al.使用ZFN和TALEN进行跨物种靶向基因组编辑。科学,2011,333:307 [8] Moscou MJ、Bogdanove AJ。TAL效应子通过一种简单的密码控制DNA识别。科学,2009,326:1501 [9] Lo TW、Pickle CS、Lin S等人。使用TALEN和CRISPR/Cas9对进化多样化的线虫进行精确且可遗传的基因组编辑以设计插入和缺失。遗传学,2013,195:331-48 [10] Cho SW、Kim S、Kim JM等人。利用Cas9 RNA引导的核酸内切酶在人类细胞中进行靶向基因组工程。自然生物技术,2013,31:230-2 [11] Gaj T、Gersbach CA、Barbas CF第3。基于ZFN、TALEN和CRISPR/Cas的基因组工程方法。Trends Biotechnol,2013,31:397-405 [12] Brandsma I, Gent DC. DNA双链断裂修复中的途径选择:平衡行为的观察。
印度政府征集概念提案,主题为“开发基于干细胞的疾病和药物测试模型,以及动物模型,以确定干细胞的安全性和有效性,用于治疗人类疾病”。1. 背景:由干细胞分化而来的类器官和组织是疾病建模、药物筛选和再生医学的有前途的资源,因为它们可以忠实地捕捉组织组织,连接标准细胞培养方法和体内动物模型。然而,需要集中研究来解决低可重复性和可变性问题,并克服使用类器官和基于干细胞的管道作为药物筛选、疾病建模等标准的其他障碍。虽然类器官是未来的发展方向,但在开始人体临床试验之前,在动物模型中测试医疗治疗的安全性和有效性是一项基本要求。需要具有与人类疾病模型高度相似的病理生理学的稳健动物模型,以便轻松推断人类的剂量、给药途径和治疗结果。干细胞和基因治疗等新兴技术对其安全性和有效性的评估提出了独特的挑战。需要更大的动物模型来精确模拟骨骼、软骨、皮肤、肺、胰腺、肝脏、肠道、心脏、神经系统、肾脏和其他器官的损伤,并评估相应的治疗方法。需要寿命更长的动物模型来研究治疗的长期效果以及慢性和退行性疾病。随着基因编辑工具的日益普及和基因组测序成本的下降,现在可以快速开发干细胞和动物模型用于各种目的。本次征求建议书将支持类器官和基于干细胞的药物筛选管道;基于干细胞的疾病模型,用于诊断、药物发现和筛选;动物模型,以确定干细胞对与印度次大陆相关的人类疾病的安全性和有效性。
非人类灵长类动物(NHP)已被认为是神经发育障碍的良好模型,因为就大脑结构和认知功能而言,与人的相似之处非常相似。基因组编辑技术的最新发展已开辟了新的途径,以生成和研究转基因的NHP作为人类疾病的模型。在这里,我们回顾了神经发育疾病的遗传NHP模型的早期成功,并进一步讨论了创建下一代NHP模型的技术挑战和机遇,并具有更复杂的基因操纵和人类遗传突变的忠实表示。综上所述,该领域现在可以使用转基因的NHP模型来吸引一个新的研究时代,以增强基础研究的更快翻译,并最大程度地提高生物标志物发现和治疗性发展的临床前潜力。
安志强,德克萨斯大学休斯顿健康科学中心 MICHELE A. BASSO,华盛顿大学华盛顿国家灵长类动物研究中心 RUDOLF P. BOHM,杜兰大学国家灵长类动物研究中心 KATHLEEN CONLEE,美国人道协会 HENRY T. GREELY,斯坦福大学 DIANE E. GRIFFIN,约翰霍普金斯大学 THOMAS HARTUNG,约翰霍普金斯大学动物实验替代中心 JEFFREY H. KORDOWER,亚利桑那州立大学 DOUGLAS LAUFFENBURGER,麻省理工学院 VIRGINIA M. LESSER,俄勒冈州立大学 PATRICIA E. MOLINA,路易斯安那州立大学新奥尔良健康科学中心 RICHARD NAKAMURA,美国国立卫生研究院(已退休) KYLE E. ORWIG,匹兹堡大学 SERGIU PASCA,斯坦福大学 MICHAEL LOUIS SHULER,康奈尔大学