ORIP 2021-2025 战略计划的一个主要主题是促进开发并确保提供最高质量和最有用的动物模型和相关资源,以促进人类疾病研究。作为 ORIP 的 NIH 重点的一部分,ORIP 寻求改进和传播多个 NIH 研究所和中心 (IC) 感兴趣的最佳动物模型。因此,ORIP 制定了动物模型 R21 计划,以鼓励创新研究开发、表征和改进动物模型、生物材料和新技术,以更好地了解人类健康和疾病,并寻求旨在改善干扰动物用于生物医学研究的疾病诊断和控制的项目。拟议的 R21 项目必须广泛应用于多个 NIH IC,并探索多个身体系统或评估影响多个身体系统的疾病。 R21 计划由美国国家研究资源中心于 2007 年设立,自 2012 年以来在 ORIP 的管理下不断发展。为了符合 ORIP 的使命,即授予资助以支持研究资源(例如人类疾病动物模型),该 R21 计划满足了对更可预测和更易于生物医学研究的动物模型的需求,并满足了开发动物模型的技术进步需求。自 2013 年以来,ORIP 已为动物模型 R21 计划发布了 4 项资助机会公告 (FOA),分别是 PA-13-145(2013-2016 年)、PA-16-141(2016-2019 年)、PAR-19-369(2019-2021 年)和 PAR-21-167(2021-2024 年)。对于 PA-13-145 ,154 份申请中有 29 份获得资助,对于 PA-16-141 ,187 份申请中有 35 份获得资助,奖励率同样为 19%。在 PAR-19-369 的两年期间,76 份申请中有 19 份获得资助(奖励率为 25%)。根据 PAR-21-167 ,将继续接受申请并颁发奖励。R21 资助机制旨在鼓励探索性/开发性研究,为项目开发的早期和概念阶段提供长达 2 年的支持,总直接成本不超过 275,000 美元。平均而言,ORIP 支持的 R21 奖励的总成本约为 410,000 美元。ORIP 的动物模型 R21 计划取得了重大进展和影响。 PA-13-145 和 PA-16-141 项下的奖项分别产生了 114 和 87 份出版物,其中约 80% 的奖项至少有一篇出版物。截至 2022 年 3 月,与 PA-13-145 和 PA-16-141 相关的出版物分别被引用了 2,165 次和 796 次。PA-13-145 的出版物和引用数量较高,是因为其发布日期比 PA-16-141 更早。尽管 PAR-19-369 去年才结束,但迄今为止,根据该 FOA 已报告了三份出版物。该动物模型计划中的大多数 R21 申请和奖项都集中在动物模型和技术开发上,主要模型是小鼠,其次是苍蝇和斑马鱼。许多这些高风险、高回报的研究促成了新技术、方法和应用的开发,这些技术、方法和应用将对生物医学研究产生影响。其中一个例子是授予贝勒医学院的一项名为“将复杂的系统内源性表达模式解析为亚细胞高分辨率定位”的奖项,产生了 6 篇出版物。其中一篇出版物是关于通过多路复用基于药物的单步选择和反选择有效生成转基因苍蝇的方法和遗传种群(Cell Rep. 2021;36(11):109700;截至 2022 年 3 月被引用 2 次)。该项目生成的种群已存入布卢明顿果蝇种群中心进行分发。另一项授予冷泉港实验室的奖项,名为“CHD5 在癌症、不孕症和自闭症的表观遗传控制中的剂量”,产生了 8 篇出版物。由此产生的出版物之一是关于 Chromodomain 解旋酶 DNA 结合蛋白 5(Chd5)突变小鼠的开发以及对 Chd5 在介导精子发育过程中染色质重塑的作用的理解(Nature Communications 2015;5:3812;被引用 49 次)。第三个例子是犹他大学获得的一项名为“斑马鱼的基因打靶:建立检测疾病基因的模型”的奖项,该奖项产生了 2 篇出版物,其中一篇出版物关于斑马鱼基因组的精确基因编辑以及隐性和表型沉默条件突变的有效恢复(Dev Cell 2016;36(6):654-67;被引用 107 次)。基于动物模型 R21 计划的最新成功以及对更好的生物医学研究动物模型的需求,ORIP 请求理事会批准概念,以继续支持“动物模型和相关生物材料在研究方面的开发 (R21)”。由此产生的出版物之一是关于 Chromodomain 解旋酶 DNA 结合蛋白 5(Chd5)突变小鼠的开发以及对 Chd5 在介导精子发育过程中染色质重塑的作用的理解(Nature Communications 2015;5:3812;被引用 49 次)。第三个例子是犹他大学获得的一项名为“斑马鱼的基因打靶:建立检测疾病基因的模型”的奖项,该奖项产生了 2 篇出版物,其中一篇出版物关于斑马鱼基因组的精确基因编辑以及隐性和表型沉默条件突变的有效恢复(Dev Cell 2016;36(6):654-67;被引用 107 次)。基于动物模型 R21 计划的最新成功以及对更好的生物医学研究动物模型的需求,ORIP 请求理事会批准概念,以继续支持“动物模型和相关生物材料在研究方面的开发 (R21)”。由此产生的出版物之一是关于 Chromodomain 解旋酶 DNA 结合蛋白 5(Chd5)突变小鼠的开发以及对 Chd5 在介导精子发育过程中染色质重塑的作用的理解(Nature Communications 2015;5:3812;被引用 49 次)。第三个例子是犹他大学获得的一项名为“斑马鱼的基因打靶:建立检测疾病基因的模型”的奖项,该奖项产生了 2 篇出版物,其中一篇出版物关于斑马鱼基因组的精确基因编辑以及隐性和表型沉默条件突变的有效恢复(Dev Cell 2016;36(6):654-67;被引用 107 次)。基于动物模型 R21 计划的最新成功以及对更好的生物医学研究动物模型的需求,ORIP 请求理事会批准概念,以继续支持“动物模型和相关生物材料在研究方面的开发 (R21)”。
摘要背景:关于缺氧性脑损伤中汽车改变的流行以及与患者的结局的关联知之甚少。我们旨在调查通过有针对性温度管理及其与结果关联的心脏骤停幸存者中的汽车。方法:对前瞻性收集的数据的回顾性分析。纳入标准:通过靶向温度管理治疗(TTM)治疗的成人心脏骤停幸存者。排除标准:创伤;败血症,醉酒;急性颅内疾病;超亚波血管疾病的史;严重的血液动力学不稳定;心输出机械支持;动脉二氧化碳部分压(PACO 2)> 60 mmHg;心律不齐;缺乏声学窗口。在体温过低(HT)期间,通过经颅多普勒(TCD)和在Normothermia(NT)期间评估一次脑动脉流量(FV)。FV和血压(BP),并计算了MXA(MATLAB)。MXA是FV和BP之间的Pearson相关系数。mxa> 0.3定义的更改的汽车。在医院出院时评估了生存。CA定义不利的神经系统效果(UO)3个月后,评估了3-5个评估的脑性能类别(CPC)。 结果:我们包括50名患者(2015年1月– DEC 2018)。 所有患者患有院外心脏骤停,有24例(48%)具有最初的令人震惊的节奏。 自发循环返回的时间为20 [10-35]。 ht(核心体温33.7 [33.2–34]°C)持续24 [23-28] H,然后重新加热和NT(核心体温:36.9 [36.6-37.4]°C)。脑性能类别(CPC)。结果:我们包括50名患者(2015年1月– DEC 2018)。所有患者患有院外心脏骤停,有24例(48%)具有最初的令人震惊的节奏。自发循环返回的时间为20 [10-35]。ht(核心体温33.7 [33.2–34]°C)持续24 [23-28] H,然后重新加热和NT(核心体温:36.9 [36.6-37.4]°C)。三十一名(62%)患者在出院时没有生存,有36名(72%)患有UO。MXA低于NT期间(0.33 [0.11-0.58],而0.58 [0.30-0.83]; P = 0.03)。在HT期间,MXA在结果组之间没有差异。NT,MXA的UO患者高于其他患者(0.63 [0.43-0.83] vs. 0.31 [ - 0.01-0.67]; p = 0.03)。MXA在NT时的CPC值之间有所不同(p = 0.03)。具体来说,CPC 2组的MXA低于CPC 3和5组。在多变量分析中,初始不可震动的节奏,NT期间的高MXA和高度恶性的脑电图模式(HMP)与院内死亡率有关; NT和HMP期间的高MXA与UO相关。结论:TTM治疗的心脏骤停幸存者经常改变汽车。在Normothermia期间改变的汽车与不良预后独立相关。关键字:艾哥后脑损伤,神经系统损伤,温度管理
在过去20年中,特别是随着外显子组测序技术的出现,常染色体显性和从头突变,编码Na +,K + -ATPase(NKAα3)泵的Na +,K + -ATPase(NKAα3)泵的神经元特异性α3亚基,ATP1A3,ATP1A3,ATP1A3,已被确定为photirogical conterypic nequim nequarum os of neuromy os of -nequim os of nequim of nequim os ne nequim,ATP1A3的这些等位基因疾病包括(在严重性/残疾和儿童发育中发作的近似顺序):Polymicrogyria;童年的交替偏瘫;小脑共济失调,蛋白酶,PES洞穴,视神经萎缩和感觉神经性听力损失综合征;用小脑共济失调复发脑病;和快速发作的肌张力障碍 - 帕金森主义。一些患者呈现中间,非典型或组合表型。由于这些疾病目前很难治疗,因此对更有效的疗法的需求未满足。分子机制通过ATP1A3中突变导致广泛的神经系统症状的分子机制知之甚少。然而,使用遗传改变模型生物的体内比较研究可以洞悉NKAα3中引起疾病突变的生物学后果。在此,我们回顾了用于研究ATP1A3相关疾病的现有小鼠,斑马鱼,果蝇和Caenorhabditis模型,并讨论了他们对了解疾病机制和新型治疗学发展的潜在贡献。
针对多发性骨髓瘤(MM)的靶向疗法包括抗CD38抗体daratumumumab,除了其固有的细胞毒性外,还可以用示踪剂和b-和-emitter radioncter radionuclides radionuclides for NotorMunmunotherapy还可以放射性标记。方法:我们已经比较了B-与A -Emitter放射性免疫疗法使用放射性标记的Dota -Daratumumumumumumab的潜在治疗性效率,这是在传播多发性骨髓瘤的临床前模型中的。多剂量水平以最高效率和最低毒性的剂量找到剂量。结果:通过B- emitter 177 lu-dota-daratumumumab的剂量 - 响应研究,测试剂量最低的剂量为1.85 MBQ,将存活率从37 d扩展到47 d,但并未延迟肿瘤的生长。剂量分别为3.7和7.4 MBQ的生存率分别延长至55和58 d,导致肿瘤生长的同等延迟较小,然后再生。较高剂量,11.1 MBQ消除了肿瘤,但由于全身毒性,与未经处理的对照相比没有对生存的影响。In contrast, the a -emitter 225 Ac-DOTA-daratumumab had a dose-de- pendent effect, in which 0.925, 1.85, and 3.7 kBq increased survival, compared with untreated controls (35 d), to 47, 52, and 73 d, respec- tively, with a signi fi cant delay in tumor growth for all 3 doses.较高的剂量为11.1和22.2 kBQ,导致等效的生存率为82 d,但具有显着的全身毒性。与未靶向225 AC-DOTA-TRASTUZUMAB的平行研究没有对未经处理的控制措施进行改进,并导致了全身毒性。结论:我们确定和数学建模确认,通过靶向疗法实现最大生物学剂量,并证明225 AC在延迟肿瘤生长和降低全身毒性方面比177 LU优于177 LU。
执行摘要在2020年11月24日举行了关于验证动物模型和生物医学研究工具的虚拟研讨会的10个会议。该研讨会旨在讨论生物医学研究中使用的动物模型的状态和需求的场所。第二会议的重点是开发工具和技术,以使斑马鱼模型生物用于临床前研究。参与者强调了斑马鱼模型在疾病研究和药物发现中的独特价值。讨论的主题包括遗传性癫痫,未诊断的人类疾病,脊柱侧弯,细胞条形码,传染病和罕见疾病。几位参与者指出,应该解决成像成年斑马鱼的挑战。在会议期间,确定了以下需求:(1)考虑常见和不常见的人类疾病的遗传异质性,以及开发涉及许多突变的斑马鱼模型的潜力,(2)其他细胞类型 - 特异性启动子和策略以及使用有效的Zebraf Zebraf tosod and od nor Inter(4)的策略(4)检测并调节特定细胞类型中斑马鱼蛋白的功能。此外,基因组和基因编辑技术(例如CRISPR,用于谱系追踪[SCGENTALT]的合成靶阵列的单细胞基因组编辑[Scgestalt],CRISPR介导的整合录音带[犯罪])被强调,因为他们作为研究的高优势领域的承诺。最后,还强调了支持技术开发和实施,研究中心,财团,数据库和筛选库的需求。几位参与者表达了他们对研究基础设施计划办公室(ORIP)的渴望,以进一步支持初步模型开发,与研究其他模型生物体的研究人员的协作互动以及与该领域的新研究人员的互动。会议联合主席丽贝卡·布尔丁(Rebecca Burdine),普林斯顿大学威廉·塔尔伯特(William Talbot)俄勒冈大学伦纳德大学,医学博士,波士顿儿童医院
心血管疾病是对人类健康的严重威胁,是全球死亡率的主要原因。近年来,在理解心脏形成和发育方面取得了令人兴奋的进步,使心脏生物学家能够在治疗性心脏再生领域取得显着进步。我们对心脏发育和再生的大部分理解,包括基因和信号途径,都是由非哺乳动物模型生物(例如水果质量,鱼类,青蛙和鸡肉)的开拓性作品驱动的。与哺乳动物模型相比,非哺乳动物模型生物在高通量应用中具有特殊优势,例如疾病建模,药物发现和心脏毒性筛查。心血管疾病的基因工程动物提供了研究发病机理的分子和细胞机制并评估治疗策略的有价值的工具。已经建立了大量的先天性心脏病(CHD)非哺乳动物模型,并测试了涉及疾病的基因和信号通路。在这里,我们回顾了这些模型所揭示的心脏发展和再生的机制,突出了非哺乳动物模型作为心脏研究工具的优势。这些动物模型的知识将促进治疗发现,并最终加速转化医学。
1 Azuma等。“人类肝细胞在fah - / - /rag2 - / - /il2rg - / - 小鼠中的稳健膨胀。”自然生物技术(2007)。2冯·施文(Von Schaewen)等。“通过病毒适应扩大丙型肝炎病毒的宿主范围。”MBIO(2016。 3 Valenti等。 “ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。” Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。MBIO(2016。3 Valenti等。 “ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。” Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。3 Valenti等。“ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。”Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。Hepatology(2010)。4 Srinivasan等。“肝磷酸合成酶1-缺乏的肝脏小鼠模型。”遗传代谢疾病杂志(2019年)。5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。5 Hu,Huili等。“功能小鼠和人肝细胞作为3D器官的长期扩张。”Cell(2018)。Cell(2018)。
摘要 冠状病毒的出现已引起严重的全球公共卫生问题,因为它们感染人类会导致严重的急性呼吸道疾病和死亡。近二十年来,致命冠状病毒爆发了三次(2002 年的 SARS-CoV、2012 年的 MERS-CoV 和 2019 年的 SARS-CoV-2)。目前的 SARS-CoV-2 感染比 2002 年的 SARS-CoV 严重得多,截至 2020 年 4 月 17 日,已蔓延至 213 多个国家、地区或领土,造成超过 200 万例病例。不幸的是,目前尚无疫苗和特定的抗冠状病毒药物。目前的临床治疗不足以抑制病毒复制和炎症,以及逆转器官衰竭。大量的研究工作集中在加深我们对 SARS-CoV-2 病毒生物学的了解,改进抗病毒治疗和疫苗接种策略。动物模型对于冠状病毒的基础研究和药物研发都很重要。本综述旨在总结目前可用的 SARS-CoV 和 MERS-CoV 动物模型,以及它们在 SARS-CoV-2 研究中的潜在用途。我们将讨论这些动物模型的优点和注意事项,并提出可能指导 SARS-CoV-2 引起疾病的基础研究和紧急治疗的重要发现。
1 中国科学院动物研究所干细胞与生殖生物学国家重点实验室,北京 100101 2 中国科学院大学,北京 100049 3 中国科学院干细胞与再生研究所,北京 100101 4 中国农业大学北京食品营养与人类健康高精尖创新中心,北京 100193 5 中国农业大学生物学院农业生物技术国家重点实验室,北京 100193 6 犹他大学医学院人类遗传学系,犹他州盐湖城 84112,美国 7 怀特黑德生物医学研究所,马萨诸塞州剑桥 02142,美国 8 麻省理工学院生物系,马萨诸塞州剑桥 02142,美国