几十年来,基因组工程一直是推动人们理解基因组的关键因素,而最近,基因组工程取得了重大进展,并推动了基因编辑的发展。当前的颠覆性创新包括两个方面:实施越来越快的基因组测序技术,以及开发越来越有效的工具来编辑现有的 DNA 序列,也就是重写基因组。这些前所未有的生物技术工具有望揭示基因的作用、个体间差异的意义(尤其是对健康状况的影响),以及更广泛地说,为人类基因组修复和驯化更适合人类需要的动植物提供新的可能性。然而,将这些技术应用于包括人类在内的生物体,引起了人们对将基因改造传递给后代的担忧,并促使人们进行伦理反思。伦理问题还涉及我们目前对所用技术的不完善控制,以及对个人、生态和进化系统不确定的短期和长期影响。在植物界,品种间杂交、选择方法、体外繁殖技术、诱变、转基因以及最近的基因编辑使某些植物能够适应人类的需求,同时也引发了社会、伦理和知识产权问题。在动物界,人们正在开发多种应用,将有害基因引入有害物种以根除它们,或者将抗性基因引入受到细菌、真菌或病毒感染威胁的物种种群。然而,这些应用对生态系统的长期影响尚不清楚。在动物育种中,长期以来,为了商业盈利的目的,人们一直采用实验程序来扩大牲畜基因改造的传统方法,但却忽视了动物福利问题。更成问题的是基因驱动,它能够迅速将基因改造引入整个种群。在公共卫生背景下,使用基因驱动来控制媒介传播疾病,例如消灭疟疾媒介蚊子等物种,可能会带来无法控制的、甚至可怕的后果。在人类中,对体细胞基因组进行临床试验似乎在各个领域都很有前景。然而,编辑人类基因组的新可能性不是在体细胞中,而是在配子或胚胎中,这意味着身体的所有细胞,包括生殖细胞,都会受到影响,这带来了一个重大的伦理问题,因为基因修改会传给后代。这种方法在法国被禁止,除了基础研究领域之外,因为它违反了法国批准的《奥维耶多公约》和《法国民法典》第 16-4 条。
作为生物学家,我们一直对生物体的多样性和复杂性着迷。要了解动物界多样性的起源,我们必须了解动物的发育,而自发现以来,最能引起发育生物学家关注的一组基因可能就是 Hox 基因。这些基因编码高度保守的同源框转录因子,存在于从果蝇到人类的多种生物中。它们最早是在果蝇(Drosophila melanogaster)中发现的,最初被认为在决定生物体身体结构方面发挥着至关重要的作用 [1] 。然而,对 Hox 基因的研究已经远远超出了动物发育的范围,为至少另外两个生物学领域提供了信息。首先,它们是动物进化的关键驱动因素:它们部署方式和时间的变化,以及它们在下游基因网络中的变化,促进了动物身体结构的变化 [2,3] 。 Hox 基因研究还揭示了具有非常相似的 DNA 结合特异性的相关转录因子家族如何在体内发挥不同的功能 [4] 。可以说,没有其他任何一组基因对如此不同且重要的生物学领域产生过如此重要的影响。在本期特刊中,我们介绍了一系列文章,反映了 Hox 研究产生深远影响的所有三个领域:动物发育、动物进化和转录因子机制。在进化洞察方面,我们有三篇引人入胜的文章。第一篇由 Mulhair 和 Holland 撰写 [5,本期] ,基于一个有趣的观察结果,即大多数 Hox 基因在动物基因组中聚集在一起,并且它们沿主体轴线的表达与它们在这些簇中的位置相关。Mulhair 和 Holland 的贡献是一项杰作,他们使用不少于 243 种昆虫(代表 13 个目)的公开基因组序列来分析这些基因在簇级别组织的趋势。 Hox 基因簇大小和组织的巨大目特异性差异,以及新的同源框基因的重复、丢失和出现(例如鳞翅目中 zen 直系同源物的爆炸式增长)表明 Hox 基因具有许多物种特异性功能和调控模式,尚待发现。Wanninger 的文章 [6,本期] 探讨了 Hox 基因的进化起源以及 Hox 基因数量与动物复杂性的关系。Wanninger 首先通过描述几种可以解释当前可用序列数据的不同情景,分析了 Hox 基因在进化过程中出现和丢失的时间。一个结论是,与其仅仅依靠基因表达来确定形态性状的进化,不如包括比较形态学和基因-基因相互作用的数据集。第三,Turetzek 等人 [7,本期] 深入研究了蜘蛛中 Hox 基因的组织和表达。蜘蛛的身体结构与水果等研究较多的节肢动物不同,
•描述如何根据常见的观察特征和基于相似性和差异(包括微生物,植物和动物)将生物分类为广泛的群体•给出了根据特定特征对植物和动物进行分类的理由。先前的学习(学生已经知道并可以做的是什么)知道有一个动物界分为脊椎动物和非脊椎动物。脊椎动物可以分为哺乳动物,鱼类,鸟类,爬行动物和两栖动物。知道有一个植物王国可以分为开花和非开花植物。使用排序树。对脊椎动物进行分类,学会将无脊椎动物的动物分类为无脊椎动物 - 无骨,annelids,annelids,arachnids,rachnids,甲壳类动物,海绵,海胚层和昆虫lo:使用分支的钥匙来对无脊椎动物进行分类的钥匙来分类:从鸟类中分类:鸟类和鸟类的鸟类,鸟类,鸟类,妈妈。将动物的照片排序包括误解 - 海豚,鲸鱼,鸭嘴兽,鲨鱼,蝙蝠,蜜蜂和蜗牛。蜜蜂和蜗牛会在哪里?Know the features of living things are movement, respiration, sensitivity, growth, reproduction, excretion, and nutrition End Goals (what pupils MUST know and remember) • Know Carl Linnaeus as a pioneer of classification • Know to classify flowering plants into grasses, shrubs, cereals, and deciduous trees • Know to classify non-flowering plants into algae, mosses, ferns, and coniferous trees • Know to classify animals which are vertebrates – have backbones - (birds, fish, reptiles, mammals, amphibians) • Know to classify animals which are invertebrates – no backbones- into molluscs, annelids, arachnids, crustaceans, sponges, echinoderms, and insects • Know micro-organisms can be classified into bacteria, viruses, fungi,藻类和原生动物关键词汇无脊椎动物,昆虫,蜘蛛,蜗牛和蠕虫,分支树,分类,环境,环境,代表性,poter,苔藓,蕨类植物,开花植物,针叶树,针叶树,灌木,谷物,麦片,孢子,孢子,孢子,孢子,小型,微生物,核,单核,单粒细胞,酸味,饲料,幼虫,幼虫,饲料,饲养型,幼虫,藻类的用途,食品生产,清洁产品,分解剂,青霉素,酵母,抗生素会议1:审查事先学习回顾:昆虫的生命周期,哺乳动物,两栖动物,爬行动物,爬行动物,两栖动物和鸟类介绍Carl Linnaeus - Carl Linnaeus - 可以将所有生物归为所有生命的东西 - 所有生物都可以使用BINOM alial System(2个名称)(2个名称)(2) https://www.youtube.com/watch?v=-lvunuiot4w bbc教学 - carl linnaeus https://www.youtube.com/watch?v=gb_io-szlgk carl carl carl carl linnaeus自然历史记录博物馆2:recap 2:recap - carl linnaeus是谁?
生物的生物学多样性:生命世界什么是生物?生物多样性;需要分类;生命的三个领域;物种和分类层次结构的概念;二项式命名法。生物分类五个王国分类; Monera,Protista和Fungi分为主要群体的显着特征和分类;地衣,病毒和病毒。植物王国的显着特征和植物分为主要群体 - 藻类,苔藓植物,pteridophyta和Gymnospermae。(显着和区分特征以及每个类别的一些示例)。动物界的显着特征和动物的分类,直接到门水平的非配合物以及弦弦到班级水平(显着特征和区分每个类别示例的特征)。(不应显示活动物或标本。)动物和植物中的结构组织:花序和花朵的开花植物形态的形态,01家族的描述:茄科或莉莉亚科(与实践课程的相关实验一起处理)。动物组织中的结构组织。细胞:结构和功能细胞 - 生命细胞理论和细胞的单位,作为生命的基本单位,原核和真核细胞的结构;植物细胞和动物细胞;细胞包膜;细胞膜,细胞壁;细胞细胞器 - 结构和功能;内膜系统,内质网,高尔基体,溶酶体,液泡,线粒体,核糖体,质体,微生物;细胞骨架,纤毛,鞭毛,中心菌(超微结构和功能);核。生物分子活细胞的化学成分:蛋白质,碳水化合物,脂质,核酸的生物分子,结构和功能;酶类型,性质,酶作用。单元格:结构和功能;细胞周期和细胞分裂细胞周期,有丝分裂,减数分裂及其意义。植物生理学的光合作用在高等植物的光合作用中,作为自养营养的一种手段;光合作用的位点,参与光合作用的颜料(基本思想);光合作用的光化学和生物合成阶段;循环和非循环的辐射磷酸化;化学含量假设;光振动; C3和C4途径;影响光合作用的因素。植物中气体交换的呼吸;细胞呼吸 - 糖酵解,发酵(厌氧),TCA循环和电子传输系统(有氧);能量关系 - 产生的ATP分子的数量;两性途径;呼吸商。植物 - 生长和发育生长调节剂 - 生长素,吉布素,细胞分裂素,乙烯,ABA。人类生理学呼吸和交换动物中气体的气体呼吸器官(仅回想);人类的呼吸系统;呼吸机制及其在人类中的调节 - 气体的交换,气体的运输和呼吸的调节,呼吸体积;与呼吸有关的疾病 - 哮喘,肺气肿,职业呼吸系统疾病。体液和血液的循环组成,血液组,血液凝结;淋巴的组成及其功能;人类循环系统 - 人心脏和血管的结构;心脏周期,心输出量,心电图;双循环;心脏活动的调节;
无脊椎动物的动物,具有分段的身体,外骨骼和铰接的附属物是动物界,节肢动物中最大的门,占所有已知生物物种的80%以上。它们表现出很大的生物多样性,具有广泛的适应和形式,例如昆虫,龙虾,螃蟹,蜘蛛,蝎子,螨虫,甲虫,cent和千足虫,它们生活在地球上每个栖息地。节肢动物在维持生态系统服务中起着极为重要的作用,包括对人类的好处[1,2]。例如,许多物种在大多数营养网中授粉,产生有用的物质,作为害虫控制,并充当其他动物的食物[3-5]。此外,螨虫,异脚类,米尔小脚架和昆虫是清除剂或分解剂,它们破坏了死植物和动物伴侣,将其转化为土壤养分[6],或者是环境污染的有价值的生物识别者[7-9]。许多甲壳类物种(螃蟹,龙虾,虾和小龙虾)在很大程度上被人类食用,因此被密集的商业规模耕种[10]。相比之下,其他甲壳类动物和昆虫是高度入侵的物种,是全球生物多样性的最大威胁之一,需要严格的控制策略[11-16]。其他是农作物和储存产物的直接害虫[17],毒性载体或致病生物的中间寄主[18]。这个跨学科的主题提供了一个平台,以突出新的研究发现以及形态和功能适应以及节肢动物的多样性和保护性的重大进展。Olszewski等。Olszewski等。我们回顾了48篇文章,在同行评审期刊上发表了48篇文章,其中包括29篇文章(27篇原始和2篇评论),在昆虫中发表了11篇文章,有11篇文章(10篇原始文章和1篇文章和1个评论),5个在动物中,以及3篇文章。物种的范围,无论生态系统健康,入侵物种还是疾病媒介的重要指标都在很大程度上取决于它们适应环境和气候条件的能力,以及在自然和邻域环境中适当的宿主的可用性。在这方面,物种与它们所处环境的相互作用,无论是自然的还是人为的,形态功能的适应性和遗传特征,都是昆虫发表的29篇论文的共同点。[19],旨在确定北波兰河谷环境的分散的psamphiolous草原挖掘机黄蜂群落(Spheciformes)的物种组成,证实了其他研究的发现,挖掘机黄蜂物种的数量随着增加的林地覆盖率而减少[20]。这项研究表明,从生物多样性保护的角度来看,重要价值的地点的管理应保留栖息地的镶嵌性。Munguia-Soto等人的研究目的。[21]是要在四年期间比较野生蜜蜂物种的种群丰度和密度,以评估奇瓦瓦南部沙漠中有利于蜜蜂种群的潜在趋势,威胁和因素,从而强调了锅陷阱颜色,年,季节和物种的重要性,以评估蜜蜂的丰富度。[22]研究了洛斯·图克斯特拉斯(Los Tuxtlas)的淡水大型无脊椎动物群落在另一项研究中,旨在填补有关河流生态系统及其相关水生动物群的信息,GóMezmarín等。
摘要 儿童在生命的最初几年就表现出亲社会行为。研究表明,这种早期的亲社会行为主要是出于对他人的同情,但随着发展,儿童的亲社会行为变得更加多样化、更具选择性,并且在动机和认知上更加复杂。在这里,我们回顾了最近的证据,这些证据表明,从 5 岁左右开始,儿童逐渐能够策略性地使用亲社会行为作为实现其他目标的工具,例如提高声誉、被选为社会伙伴、获得互惠和履行人际义务。因此,儿童基于同情的亲社会行为正在被扩展和重塑为一种行为方式,使个人能够追求和平衡利他、互惠和自私的动机。地址 1 密歇根大学,密歇根大学心理学系,530 Church Street,安娜堡,密歇根州,48109,美国 2 马克斯普朗克人类发展研究所,适应理性中心,Lentzeallee 94,柏林,14195,德国 通讯作者:Grueneisen,Sebastian ( grueneisen@mpib-berlin.mpg.de ) 关键词 亲社会行为、儿童、合作、战略、利他主义。简介 尽管人类物种被描述为表现出在动物界其他任何地方都未见过的亲社会性 [1],但所谓的人类亲社会行为的个别案例常常受到怀疑。这是有道理的,因为人类成年人有能力策略性地参与亲社会行为,故意满足他人的迫切需要,以此作为实现私利目的的工具手段,例如提升自己的声誉、获得回报或被选为社交伙伴。这与基于同情或真正的亲社会行为形成对比,在这种亲社会行为中,促进受益人的目标或福利本身就是目的 1(图 1)。在对成年人的研究中,举证责任在于证明某种行为不是由自私的目标所驱动的,无论这些目标有多么复杂,同情或对他人福祉的真正关心才能被接受为一种解释 [2-4]。这种担忧源于人们意识到成年人能够使用聪明的策略来欺骗他人或自己。然而,对于年幼的孩子来说,这种怀疑并不是什么大问题,主要原因在于:战略亲社会性可能很费力。考虑一下旨在被选为社会伙伴的亲社会行为所涉及的潜在认知挑战(例如今天分享一些蛋糕,明天被邀请参加聚会)。这样做可能需要一定程度的未来规划、延迟满足的能力(愿意放弃现在可以消费的资源以换取以后更好的回报),以及了解他人对自己的看法,以预测这些自我认知将如何影响他们的行为,等等。事实证明,与基于同情的亲社会行为相比,战略亲社会性实际上可能相当困难。在这里,我们采用发展方法来评估这种战略形式的亲社会性在个体发育过程中是如何发展的。我们认为,战略亲社会性不是必须克服的默认行为,而是必须在发展过程中获得。我们简要回顾了最新证据,这些证据强化了以下观点:儿童在生命的最初几年就已经怀着造福他人的意图行事,正如数十年的研究表明的那样,这些早期的亲社会行为大多是出于对他人的同情 [5-8]。然后,我们继续进行更详细的证据审查,这些证据表明,在个体发育过程中,儿童的亲社会性从主要基于同情心发展为行为更加多样化、更具选择性、动机和认知更加复杂。具体而言,最近的研究结果表明,从 5 岁左右开始,儿童