图 3.1 台达 PLC………………...…………………………………………………………... 17 图 3.2 开关…………………………………………………………………………………... 22 图 3.3 部分输入类型…………………………………………………………………………. 23 图 3.4 输出设备………………………………………………………………………………. 24 图 3.5 PLC 连接……………………………………………………………………………. 24 图 3.6 旋转编码器……………………………………………………………………………… 27 图 3.7 接触器工作原理……………………………………………………………………………….. 29 图 3.8 VFD 电路……………………………………………………………………………………...... 31 图 4.1 主要设计框图…….………………………………………………………………… 34 图 4.2 功能框图……………………………………………………………………........ 34 图 4.3 机器流程图………………………………………………………………………… ... 36 图 4.4 电源电路…………..……………………………………………………………… 38 图 4.5 气缸气动回路…………………………………………………………………… 39 图 4.6 电机工作方向………………………………………………………………… 41 图 4.7 工作台和传送带运动……………………………………………………...…….. 41 图 4.8 不带工作台的石材切割机 2-D 视图………………………………………...... 43 图 4.9 控制回路…………………...………………………………………………………...... 44
我们的集成系统可以适应从低到高的有效载荷,并能满足客户的培训需求,包括公务机、商用飞机、直升机和超轻型喷气式飞机 (VLJ) 等新类别。我们所有子系统都具有通用的软件和硬件接口,这意味着安装、调试和用户培训更加轻松快捷。我们的经验意味着我们可以帮助您缩短开发时间,并确保我们推荐的子系统具有最佳的性能/尺寸比,以满足您的确切要求。
频谱效率高的数字陆地移动系统(无论是用于私人系统还是公共系统)的总体目标是: – 提供更高频谱效率的系统,从而在有限的频谱资源内比模拟系统容纳更多的用户; – 网络上更高的平均语音质量水平和加密语音以保护隐私; – 为用户提供广泛的服务和设施,包括语音和非语音,与公共固定网络(公共交换电话网(PSTN)、公共数据网(PDN)、综合业务数字网(ISDN)等)提供的服务和设施兼容。); – 为用户提供各种应用程序来满足他们的需求,从手持站到车载站,都具有语音和数据接口; – 使用最先进技术的移动和基础设施设备,以节省重量、功耗和成本。
1.3 目标................................................................................................................ 3
1.2 概述................................................................................................................ 1
名称 类型和测试仪信号 方向 说明 加速踏板位置 (APP) 模拟输出 驾驶员脚踏板 气流 模拟/数字输出(取决于传感器类型) 测量进入发动机的空气质量 进气歧管压力 (IMP) 模拟输出 影响空气密度 进气歧管温度 (IMT) 模拟输出 影响空气密度 燃油压力 模拟输出 影响喷油器每次启动时分配的燃油 曲轴 模拟/数字输出(取决于传感器类型) 高速信号;旋转位置信息 凸轮 模拟/数字输出(取决于传感器类型) 高速信号;旋转位置信息 Lambda/O2 模拟输出 排气化学反馈 爆震 模拟输出 高速信号;气缸振动反馈 节气门位置 模拟输出 节气门体反馈 节气门指令 数字 PWM 输入 ECU 的节气门设定点
名称 类型和测试仪信号 方向 说明 加速踏板位置 (APP) 模拟输出 驾驶员脚踏板 气流 模拟/数字输出(取决于传感器类型) 测量进入发动机的空气质量 进气歧管压力 (IMP) 模拟输出 影响空气密度 进气歧管温度 (IMT) 模拟输出 影响空气密度 燃油压力 模拟输出 影响喷油器每次启动时分配的燃油 曲轴 模拟/数字输出(取决于传感器类型) 高速信号;旋转位置信息 凸轮 模拟/数字输出(取决于传感器类型) 高速信号;旋转位置信息 Lambda/O2 模拟输出 排气化学反馈 爆震 模拟输出 高速信号;气缸振动反馈 节气门位置 模拟输出 节气门体反馈 节气门指令 数字 PWM 输入 ECU 的节气门设定点
多电技术的快速发展使得飞机可选的电源和作动器类型越来越丰富,这使得机载作动系统架构优化过程中不同电源和作动器的组合变得极其复杂。传统的“试错”法已不能满足设计要求。本文首先介绍了多电飞机(MEA)飞行控制作动系统(FCAS)的组成,并计算了可能的架构数量。其次,从安全可靠性、重量和效率等方面提出了FCAS架构的评价标准,并计算了各操纵面采用相同作动器配置情况下的评价标准值。最后,应用遗传算法(GA)获得了MEA FCAS架构的优化结果。与传统仅采用伺服阀控液压作动器的作动系统架构相比,优化后的多电作动系统架构重量可减轻6%,在满足安全可靠性要求的基础上效率可提高30%。
飞机使用不同类型的执行器。它们充当电能与机械能的转换器。这些元件用作调整武器和登机设备(例如用于开放式装载机)以及飞机飞行控制系统的直接元件。液压执行器在过去几年中占据主导地位。它们确保强大的力量,并且具有良好的质量和能量比例。第二次世界大战后,飞机配备了飞行控制系统。该系统在飞行过程中为飞行员提供支持。飞机经常使用混合执行器系统。机电执行器用作前置放大器。它们改变电控制信号以移动执行器的推力管。机电执行器移动液压缸的选择阀,液压缸的活塞改变飞机的控制面。液压执行器用作功率放大器。现在,混合系统由电液执行器取代。前置放大器和功率放大器制成一个单元。有一个电控制信号,并通过流体执行器的活塞产生强大的力量。最近,飞机一直在采用多电动飞机 (MEA) 概念下的技术进行设计。该技术假设在机载系统中使用更多电气元件,以减轻气动和液压管道的重量,更易于维护,最终提高飞行安全性。在实际应用中,MEA 技术