摘要 - 随着开放科学的出现,越来越多的研究人员正在共享他们的数据集和处理方法。但并非所有领域都关注,并且有些仍然缺乏开放的数据库,这些数据库可以更快,更相关的研究,更重要的是赞成结果的可复制性和可重复性。对于脑部计算机界面的领域尤其如此,尤其是在被动脑机接口的相对新领域。本文概述了基于脑电图的被动脑机接口应用程序的当前可用数据集。详细介绍了其主要特征,包括参与者的数量,任务,电极设置和电极位置信息。缺乏被突出显示和讨论,并为将来的研究提供了建议。
近年来,非侵入式脑机接口 (BCI) 设备和应用在各种环境(医疗、工业等)中得到了迅猛发展。该技术允许代理“直接用思想行动”,绕过外周运动系统。有趣的是,值得注意的是,典型的非侵入式 BCI 范式与人类自愿行动的神经科学模型相距甚远。值得注意的是,在 BCI 实验中,动作和感知之间的双向联系经常被忽略。在当前的观点文章中,我们提出了一种创新的 BCI 范式,它直接受到意念运动原理的启发,该原理假定自愿行动是由即将到来的感知效果的预期表现驱动的。我们相信 (1) 调整 BCI 范式可以实现简单的动作-效果绑定,从而实现动作-效果预测;(2) 使用这些动作-效果预测的神经基础作为 AI 方法中感兴趣的特征,可以实现更准确、更自然的 BCI 介导动作。
a 慕尼黑工业大学伊萨尔医院放射肿瘤学系;b 德国转化放射治疗联盟 (DKTK),慕尼黑合作伙伴网站;c 慕尼黑亥姆霍兹中心放射医学研究所 (IRM)、放射科学系 (DRS);d 信息学系;e 德国慕尼黑工业大学 TranslaTUM - 中央转化癌症研究所;f 瑞士苏黎世苏黎世大学医院放射肿瘤学系;g 马格德堡大学医院放射肿瘤学系;h 德国耶拿弗里德里希席勒大学耶拿大学医院放射治疗和放射肿瘤学系;i 瑞士苏黎世苏黎世大学医院定量生物医学系;j 诊断和介入神经放射学系; k 慕尼黑工业大学伊萨尔右翼医院神经外科系,慕尼黑;l 海德堡大学医院放射肿瘤学系;m 海德堡放射肿瘤学研究所 (HIRO),国家放射肿瘤学中心 (NCRO),海德堡;n 德国哥廷根大学医学中心放射肿瘤学系;o 瑞士阿劳州立大学阿劳分校 KSA-KSB 放射肿瘤学中心;p 富尔达综合医院放射肿瘤学系,富尔达;q 基尔石勒苏益格-荷尔斯泰因大学医学中心放射肿瘤学系;r 弗莱堡大学医学中心放射肿瘤学系;s 德国癌症联盟 (DKTK),弗莱堡合作伙伴中心,弗莱堡,德国;t 塞浦路斯利马索尔欧洲大学德国肿瘤中心放射肿瘤学系; u 法兰克福及德国北部 Saphir 放射外科中心,Guestrow;v 法兰克福大学医院神经外科系,法兰克福;w 慕尼黑工业大学医学人工智能与信息学研究所,慕尼黑;x 亥姆霍兹人工智能,亥姆霍兹慕尼黑中心,诺伊尔贝格,德国
Mostefa Ben Naceur、Mohamed Akil、Rachida Saouli、Rostom Kachouri。使用重叠块和多类加权交叉熵,通过基于深度学习的选择性注意实现全自动脑肿瘤分割。医学图像分析,2020 年,�10.1016/j.media.2020.101692�。�hal-02533454�
脑机接口,尤其是被动脑机接口 (pBCI),由于能够估计和监控用户心理状态,越来越受到基础研究和应用研究与开发社区的关注。测试新的管道和基准分类器以及特征提取算法是进一步研究该领域的关键。不幸的是,pBCI 研究中的数据共享仍然很少。COG-BCI 数据库包含 29 名参与者在 3 个独立会话中的记录,这些会话中有 4 个不同的任务 (MATB、N-Back、PVT、Flanker),旨在引发不同的心理状态,总共超过 100 小时的开放 EEG 数据。该数据集在主观、行为和生理层面进行了验证,以确保其对 pBCI 社区的实用性。此外,还给出了一个概念证明,其中包含心理工作量估计管道和结果的示例,以确保数据可用于 pBCI 管道的设计和评估。这项工作为在开放科学框架中推广 pBCI 的使用做出了巨大努力。
Baptiste Morel,Pierre Bertault,GéraldineFavrais,Elsa Tavernier,Barthelemy Tosello等。诊断和介入成像,2021,102(4),pp.225-232。10.1016/j.diii.2020.10.009。hal-03324508
图 1:组织学图谱中的 NextBrain,具有优点()、缺点()和中立点。()。(A)打印的图谱 [1],其中包含一组稀疏的手动追踪切片 [1]。(BG)覆盖范围有限的特定 ROI 的组织学图谱:(B)手动追踪的基底神经节切片 [8];(C)确定性丘脑图谱的 3D 渲染 [11];(DF)追踪的 MRI 切片、组织学切片和海马图谱的 3D 渲染 [12];(G)我们的丘脑概率图谱切片 [14]。(HN)整个人脑的组织学图谱:(H)BigBrain 的 3D 重建切片 [13];(I)MNI 模板上的 Julich-Brain 标签切片; (J) 标记的 Allen 参考脑组织学切片 [7];(K) 使用受 (J) 启发的协议标记 MNI 模板;(LN) AHEAD 脑的 MRI、组织学和 3D 渲染 [22]。(OS) 我们的新图谱 NextBrain 包括五个标本的密集 3D 组织学 (OP) 和全面的手动标记 (Q),从而可以构建概率图谱 (R),该图谱可与贝叶斯技术相结合,自动标记体内 MRI 扫描中的 333 个 ROI (S)。
通过测量局部田间电位(LFP)或脑电图(EEG)信号(EEG)信号(EEG)信号(EEG)信号(EEG)信号,通常对人群水平的神经活动进行实验研究。为了进行观察到的神经活动和模拟神经活动之间的比较,重要的是,神经活动的模拟可以准确预测这些大脑信号。在人群层面上对神经敏化的模拟通常依赖于点神经元网络模型或点火率模型。虽然这些简化的神经活动的表示在计算上是有效的,但它们缺乏计算LFP/EEG信号所需的明确空间信息。已经提出了不同的启发式方法来克服这一限制,但是这些方法的准确性尚未得到充分评估。这样一种启发式方法,即所谓的内核方法,以前已采用有希望的结果,并且具有在电动脑信号产生的生物物理学中得到充分依据的其他优势。它基于网络模型中每个突触途径的计算速率至lfp/eeg kernels,之后可以直接从人口发射速率获得LFP/EEG信号。这相当于计算大脑信号的计算工作量的大规模降低,因为为每个人群计算大脑信号,而不是为每个神经元计算。在这里,我们研究了如何以及何时可以期望内核方法起作用,并提出了预测其准确性的理论框架。最后,我们证明了内核方法对于主导大脑信号的贡献最准确。我们表明,脑信号预测的相对误差是单细胞内核异质性和尖峰训练相关性的函数。因此,我们进一步建立了内核法作为一种有希望的方法,用于计算大型神经模拟的电信号。
摘要:医学成像和深度学习模型对于脑癌的早期识别和诊断至关重要,有助于及时干预并改善患者的治疗效果。本研究论文探讨了最先进的物体检测框架 YOLOv5 与非局部神经网络 (NLNN) 的集成,以提高脑肿瘤检测的稳健性和准确性。本研究首先整理了一个包含来自各种来源的脑部 MRI 扫描的综合数据集。为了促进有效融合,YOLOv5 和 NLNN、K-means+ 和空间金字塔池化 fast+ (SPPF+) 模块集成在一个统一的框架内。脑肿瘤数据集用于通过应用迁移学习技术来完善 YOLOv5 模型,使其专门适应肿瘤检测任务。结果表明,与仅使用 YOLOv5 相比,YOLOv5 与其他模块的组合可增强检测能力,分别证明召回率分别为 86% 和 83%。此外,该研究还探讨了组合模型的可解释性方面。通过可视化 NLNNs 模块生成的注意力图,可以突出显示与肿瘤存在相关的感兴趣区域,从而帮助理解和验证该方法的决策过程。此外,还研究了超参数(例如 NLNNs 内核大小、融合策略和训练数据增强)的影响,以优化组合模型的性能。