2.ROHM 的产品设计和制造均遵循严格的质量控制体系。但是,半导体产品可能会以一定的概率发生故障或失灵。请务必自行负责实施适当的安全措施,包括但不限于针对因我们的产品发生故障或失灵而可能造成的人身伤害、财产损失的故障安全设计。以下是安全措施的示例: [a] 安装保护电路或其他保护装置以提高系统安全性 [b] 安装冗余电路以减少单个或多个电路故障的影响 3.我们的产品并非在任何特殊或异常环境或条件下设计的,如下所示。因此,对于因在任何特殊或异常环境或条件下使用任何 ROHM 产品而造成的任何损害、费用或损失,ROHM 概不负责。如果您打算在任何特殊或异常环境或条件下使用我们的产品(如下所示),您在使用前必须对产品性能、可靠性等进行独立验证和确认:[a] 在任何类型的液体中使用我们的产品,包括水、油、化学品和有机溶剂 [b] 在户外或产品暴露于直射阳光或灰尘的地方使用我们的产品 [c] 在产品暴露于海风或腐蚀性气体的地方使用我们的产品,包括 Cl 2 、 H 2 S、 NH 3 、 SO 2 和 NO 2 [d] 在产品暴露于静电或电磁波的地方使用我们的产品 [e] 在靠近产热组件、塑料线或其他易燃物品的地方使用我们的产品 [f] 用树脂或其他涂层材料密封或涂覆我们的产品 [g] 在未清除助焊剂残留物的情况下使用我们的产品(即使您使用免清洗型助焊剂,也建议清除助焊剂残留物);或用水或水溶性清洗剂清洗焊接后的残留物 [h] 在容易结露的场所使用产品 4.产品不属于防辐射设计。5.使用产品时,请验证并确认最终产品或安装产品的特性。6.特别是,如果施加瞬态负载(在短时间内施加大量负载,例如脉冲。),强烈建议在板上安装后确认性能特性。7.8.9.2.避免施加超过正常额定功率的功率;超过稳定负载条件下的额定功率可能会对产品性能和可靠性产生负面影响。根据环境温度 (Ta) 降低功耗 (Pd)。在密封区域使用时,请确认实际环境温度。确认工作温度在产品规格中规定的范围内。ROHM 对在本文件定义的异常条件下引起的故障不承担任何责任。安装/电路板设计注意事项 1.使用高活性卤素(氯、溴等)助焊剂时,助焊剂残留物可能会对产品性能和可靠性产生负面影响。原则上,表面贴装产品必须使用回流焊接方法,通孔贴装产品必须使用流动焊接方法。如果表面贴装产品需要使用流动焊接方法,请提前咨询 ROHM 代表。详情请参阅 ROHM 贴装规范
对于电子产品,英业达拥有适用于不同生产阶段的清洁化学品:▪ 在底部填充之前,提高粘合性能▪ 在引线键合之前,提高键合工艺▪ 在回流之后,去除助焊剂残留物和其他污染物▪ 在施加保形涂层或灌封之前,提高粘合性能
• 与所有免清洗焊膏助焊剂残留物完全兼容 • 无需清洗工艺,避免污染 • 低温快速固化 (<120 ºC) • 经过 5×260 ºC 回流,焊点无任何变形 • 优于所有竞争对手的带清洗工艺的底部填充材料 • 较低的 CTE,能够流入小间隙 • 可返工 • 大幅节省成本 “我们的团队很高兴将 UF 120HA 推向市场,”YINCAE 首席技术官表示。“我们了解当今制造商面临的挑战,我们设计这款产品就是为了迎头应对这些挑战。UF 120HA 具有快速流动、低温固化、与所有免清洗助焊剂残留物兼容和可返工等特点,使其成为各种高产量制造应用的理想解决方案。” YINCAE 的 UF 120HA 可立即购买。如需了解有关 YINCAE UF 120HA 底部填充材料的更多信息,或了解 YINCAE 产品系列的更多信息,请发送电子邮件至:info@yincae.com。您也可以访问我们的网站获取更多信息:www.yincae.com
焊接元件后,通常会对 PCB 进行清洁,以清除留在 PCB 上可能会影响使用寿命的污染物(如助焊剂残留物),并提供清洁的表面,以便随后涂覆的任何保形涂层具有良好的附着力。为了确保达到足够的清洁度,使用两种基本测试类型之一来监控清洁过程的有效性:1 清洁度监测器用于评估 PCB 上的实际污垢水平;这些结果可以在一小时内获得。2 加速测试用于评估污垢对 PCB 可靠性的影响;这些结果可能需要几天或几周才能获得。第一种方法采用溶剂萃取电导率 (SEC) 技术,使用酒精和水的混合物 (1)。这些技术依赖于将污垢溶解在酒精(通常是异丙醇)中,同时将任何离子物质带入水中。然后使用电导率计监测流体电阻的变化,从而监测去除的离子物质的量。这用作被评估 PCB 上污垢量的量度。该技术的缺点是,现代有机酸基助焊剂并不总是会导致萃取溶液的电导率增加。在第二种方法 (1) 中,通常由 PCB 表面上的交叉金属指状物组成的测试图案在偏置下暴露于温度和湿度的加速测试环境中。监测污垢对 PCB 表面绝缘电阻的任何影响。本文介绍了所涉及问题的研究,以便为 SIR 的理念和测量原理提供建议。讨论的问题是:- a 审查当前和潜在的 SIR 程序 b 分析 SIR 参数的重要性和敏感性 c 未来的建议 第一项,即当前 SIR 程序的审查已经报告(2a),本报告的目的是解决其中的最后两项。
总连接负载 ≤ 19.6 kVA 预熔保险丝(现场)3 x 25 A 缓熔式压缩空气 • 连接:1/4“ • 额定值:4 - 5 bar 恒定 • 质量:5 µ 过滤 • 消耗量:约 0.16 m 3 /h 取决于产量 出口处的排气 • 连接 1 x ∅ 200 mm • 额定值约。 400 m 3 /h 惰性气体(选配) • 连接:1/2“ 内螺纹 • 额定:4 bar 恒定 • 消耗:12 m 3 /h 取决于产量 运输 运输速度 • 载体运输:0.5 – 2.5 m/min 高于波浪的运输角度 • 载体运输:7° 固定 助焊剂器 雾化器 助焊剂器 调节:9 个阶段的宽度 0.2 – 2.4 连续 预热器 红外预热器额定功率 • 11 x 1.32 = 14.52 kVA 焊料槽 焊料槽加热 3 x 1.0 = 3.0 kW 焊料槽辅助加热 1 x 0.5 = 0.5 kW 焊料槽温度 230° - 280°C 焊料槽容量 250 kg 焊料加热时间约180 分钟 NB 单波 5 排 焊波宽度 300=320mm / 400=420mm 焊槽温度稳定性 ± 1 °C 控制器 控制器 PC / MIS 其他 连续噪音水平 < 65 dB(A) 剩余功耗 1.5 kW 机器尺寸 3.50 x 0.95 x 1.27 m 机器重量 约 550 kg (不含焊料填充) 颜色 灰白色 RAL 9002
和电子产品组装,使设计人员能够将每个子组件视为一个独特的模块化单元。然后可以在生产过程中最方便的时间和地点完成互连。连接器还使技术人员能够快速轻松地更换可疑组件,从而简化了设备维修过程。无需打开黑匣子柜,也不会将焊料和助焊剂等污染物引入系统,技术人员可以在几分钟内更换可疑设备并让系统重新上线。连接器还允许对电子设备进行升级,而不会对整个系统造成重大破坏。连接器使工程师能够灵活地将新产品和组件集成到现有系统中,只需保持一致的连接器规格即可。
摘要:研究了ZnO纳米粒子增强的Sn99Ag0.3Cu0.7(SACX0307)焊料合金的性能。ZnO的原始粒径为50、100和200nm。它们以1.0wt%的比例添加到焊膏中。研究了复合焊料合金/接头的润湿性、空洞形成、机械强度和热电参数。此外,还使用扫描电子和离子显微镜进行了微观结构评估。ZnO纳米粒子降低了复合焊料合金的润湿性,从而增加了空洞形成。尽管如此,复合焊料合金的剪切强度和热电参数与SACX0307参考相同。这可以通过ZnO陶瓷对Sn晶粒以及Ag 3 Sn和Cu 6 Sn 5金属间化合物晶粒的细化作用来解释。这可以弥补较低润湿性的不利影响。在改善润湿性并使用更多活性助焊剂后,ZnO 复合焊料合金有望用于高功率应用。
在无铅合金中,SAC305 可能是最推荐用于高热可靠性要求的合金。然而,对于可靠性要求更严格的应用,如汽车和能源技术,合金选择有限。其中,Sn-Ag-Cu-Sb 基合金目前用于汽车领域,但由于锑具有潜在的危险性,其存在限制了其在多个市场的未来使用。本研究的目的是开发一种无铅和无锑合金,并添加合适的微量添加剂,使其具有比其他 SAC 合金更好的热机械性能。根据所研究合金的物理和机械性能,选择了两种合金进行进一步的焊膏评估。将选定的合金加工成 4 型粉末,并使用 ALPHA CVP390 焊膏助焊剂制成焊膏,并进一步评估其热可靠性。本文介绍了这些测试的结果。本文讨论了与 SAC305 相比获得的改进。新合金在 SMT 组装的冶金和焊接性能方面有显著增强。
摘要 选择性焊接以及针入膏回流和压配是通孔元件的主要组装方法。回流工艺受元件尺寸和耐热性的限制。当出现无法修复的缺陷时,压配的成本会变得昂贵。电子制造服务意识到表面贴装技术 (SMT) 无法完全取代通孔技术。选择性焊接工艺提供了在不同层面进行焊接连接的机会,连接外壳、接线盒、铝部件、堆叠 PCB 等。新电路板组件的设计人员可以从现代选择性焊接机提供的专用焊接喷嘴和机器人功能中受益。选择性焊接可以在一定角度(倾斜)下实现,如波峰焊或水平实现,使用不同形状的喷嘴和喷嘴材料。它们都具有不同的特性,可以应用于成功焊接最复杂的组件。为了优化生产和焊接效率,装配工程师应参与装配工艺的设计。在实施新的设计和装配工艺时,选择性焊接工艺和喷嘴技术的知识可能会带来竞争优势。已经开展了研究来确定与相邻元件(尤其是表面贴装器件 (SMD))的最小距离。提出的问题包括“什么样的引脚与孔的比率可以提供最佳的孔填充效果?”和“助焊剂的选择对焊接结果有多大影响,应该使用哪种喷嘴?”历史数据与几个实验设计相结合,寻找焊接缺陷,例如桥接,同时也寻求工艺优化以实现最佳孔填充效果。孔填充对于高热质量电路板至关重要。厚铜层从预热和液态焊料中吸收大量热量。特殊的设计修改将导致焊料桶中产生更多热量,从而将焊料引导到电路板的焊接目标侧。将正确的喷嘴选择与正确的焊料加速和减速相结合,将确保即使是最难创建的接头也能满足 IPC-A-610 的要求。简介印刷电路板 (PCB) 组装的焊接要求变得越来越关键。汽车行业往往禁止修复焊接缺陷,这使得了解焊接工艺和材料特性变得更加重要,以避免过多的浪费和成本。许多设计都源于波峰焊接,通过进行一些简单的改进来增强与选择性焊接应用的兼容性,可以大大减少缺陷。如果应用了针对稳健选择性焊接工艺的特定规则,则可以在组件的设计阶段消除许多缺陷。这包括材料选择以及与电路板设计相关的属性。本文详细介绍了通过应用设计规则来预防缺陷的方法,这些规则是为使用不同焊接方法的选择性焊接工艺而制定的。这些规则包括处理电路板的建议(放置精度、翘曲等)、焊盘尺寸、与周围 SMD 或其他元件的距离、通过设计特殊通孔或改进焊盘结构来改善电路板的热传递等等。这些规则对于含铅和无铅应用是相同的,尽管无铅应用更难实现,因为合金的熔点更高、铜浸出增加、焊料污染以及实现充分孔填充的难度更大。要解决的问题选择性焊接需要对该工艺有一定的了解。关键主题是电迁移(由于助焊剂过多)、桥接、通孔填充(热问题)和焊锡球。1. 电迁移和选择性焊接