3D 打印,也称为增材制造,代表了一系列技术,这些技术使用数字图像文件(通常由计算机辅助设计 (CAD) 软件生成)通过逐层沉积过程创建 3D 对象。随着 3D 打印在过去四十年的发展,许多增材制造技术概念已经发展成为强大的独立技术,正如美国材料与试验协会 (ASTM) 国际增材制造技术委员会 F42 所定义。目前这些技术包括:桶式光聚合、粉末床熔融、材料挤出、材料喷射、粘合剂喷射、定向能量沉积和薄片层压(ASTM International,2022 年)。商用打印机将这些工程概念应用于特定应用和材料,已在各个行业中占有一席之地,每个行业都有自己的优缺点,价格也大不相同。尽管打印技术方法多种多样,但目前最广泛使用的 3D 打印机(包括消费市场)采用的是一种熔融沉积成型 (FDM) 技术,有时也称为熔融长丝制造 (FFF) 技术,该技术基于热塑性材料的挤出,热塑性材料通过加热的长丝喷嘴沉积后会变硬。就材料沉积过程而言,FDM/FFF 是一种基于挤出的打印方法,不同于其他通过液体基质的光聚合或粉末颗粒的熔合来构建结构的方法。总体而言,3D 打印如今被认为是一种有效的技术,适用于需要少量生产高度定制和定制的产品,通常以分散的方式生产,例如在偏远地区生产备件,因为它节省了设计特定制造流程来制造产品以及供应物流的成本和时间。此外,在设计、艺术和时尚领域,3D 打印机已经找到了创造独特复杂设计的空间(Gebhardt 等人,2018 年;Shahrubudin 等人,2019 年)。
在过去几年中,跨计算环境的神经成像分析的可重复性引起了人们的关注。已经部署了软件容器化解决方案,例如Docker和奇异性,以掩盖软件诱导的可变性的影响,但硬件体系结构的变化仍然不明显地导致了不清楚的结果。我们研究了硬件变异性对FSL Flirt Application产生的线性注册结果的影响,FSL Flirt Application是神经成像数据分析中广泛使用的软件组件。使用Grid'5000基础架构,我们使用两个软件包装系统(Docker and GUIX)研究了九种不同的CPU模型的效果,我们将所得的硬件变异性与随机圆形测量的数值变异性进行了比较。结果表明,硬件,软件和数值可变性导致类似幅度的扰动 - 尽管不相关 - 表明这三种可变性
PE Group的基金会是我们的利益相关者:员工,客户,本地和土著社区,供应商,贸易协会合作伙伴,非政府组织和第三方认证机构。该基岩驱使PE组在我们的利益相关者之间进行重要性评估。它们的综合影响导致了我们的可持续性策略,2030年及以后的目标,并为PE组创建了达到这些目标的路线图。
目前在加拿大市场上出售的可堆肥塑料包装应用包括咖啡包、餐具、PLU 贴纸和餐饮用具,包括外卖或即食食品,如翻盖容器、杯子和碗。这些有限的应用面临着正确处理的挑战。此外,缺乏对经过认证的可堆肥塑料的统一标签要求导致消费者感到困惑,从而导致有机物和回收流的污染增加。一些堆肥者对其最终产品的质量感到担忧。请注意,BPI 已发布有关标签要求的指南。行业和政府继续合作,推进与当前有机物管理基础设施兼容的解决方案。使用经过认证的可堆肥塑料包装的主要好处、权衡和意外后果仍在争论中。
4 IBM T. J. Watson Research Center,1101 Kitchawan Rd,Yorktown Heights,NY 10598简介需要快速管理大量数据,有效地促进了对数据中心中高速数据传输的需求。 生成AI的出现进一步推动了对高速数据传输的需求,因此数据中心的近四分之三居住在数据中心中[1]。 Traffim的增长加速了对下一代网络设备的需求,以支持更高的端口密度。 但是,用于数据传输的传统铜电缆受到长距离信号降低的限制。 这又推动了大规模部署高速光学元件的要求,以连接网络设备的各个层。 今天,数据中心在很大程度上依赖于光学,但不用于短到中间(<2m)的互连。 传统的可插入光学带宽的增加速度要比数据中心的速度慢得多,并且应用要求和常规可插入光学的功能之间的差距不断增加,这一趋势是无法实现的。 共包装光学(CPO)是一种破坏性的方法,可通过通过高级包装和电子设备和光子学的优化来大大缩短电连接长度,从而提高互连带宽密度和能量效率。 计算性能的进步从摩尔的定律缩放中有益,并且在过去20年中的性能高达60000倍,如图1所示。 但是,在同一时间范围内,I/O带宽仅增加了30倍。4 IBM T. J. Watson Research Center,1101 Kitchawan Rd,Yorktown Heights,NY 10598简介需要快速管理大量数据,有效地促进了对数据中心中高速数据传输的需求。生成AI的出现进一步推动了对高速数据传输的需求,因此数据中心的近四分之三居住在数据中心中[1]。Traffim的增长加速了对下一代网络设备的需求,以支持更高的端口密度。但是,用于数据传输的传统铜电缆受到长距离信号降低的限制。这又推动了大规模部署高速光学元件的要求,以连接网络设备的各个层。今天,数据中心在很大程度上依赖于光学,但不用于短到中间(<2m)的互连。传统的可插入光学带宽的增加速度要比数据中心的速度慢得多,并且应用要求和常规可插入光学的功能之间的差距不断增加,这一趋势是无法实现的。共包装光学(CPO)是一种破坏性的方法,可通过通过高级包装和电子设备和光子学的优化来大大缩短电连接长度,从而提高互连带宽密度和能量效率。计算性能的进步从摩尔的定律缩放中有益,并且在过去20年中的性能高达60000倍,如图1所示。但是,在同一时间范围内,I/O带宽仅增加了30倍。电信号速率的增加需要显着前进才能使信号进入/退出,此外,根据应用程序,根据应用程序,还有一个伴随的挑战,可以进一步将电信号移至路由器或开关的前面板。为了解决这一挑战,该行业将通过共包装光引擎和主要
PE 集团的基础是我们的利益相关者:员工、客户、当地和土著社区、供应商、行业协会合作伙伴、非政府组织和第三方认证机构。这一基础促使 PE 集团对利益相关者进行重要性评估。他们的共同影响促使我们调整可持续发展战略、2030 年及以后的目标,并为 PE 集团制定实现这些目标的路线图。
扩展生产者责任(EPR)已成为全球认可的政策原则。EPR的概念首先是由瑞典教授托马斯·林德奎斯特(Thomas Lindquist)在1990年瑞典环境部的一份报告中提出的。4 Lindquist将EPR定义为一项政策原则,使生产商对其产品的整个生命周期负责,尤其是在收款,回收和最终处置阶段。强大的EPR系统不仅可以促进回收利用,而且有可能推动设计变化和过渡以重复使用和减少塑料。epr通过增加与使用某些有问题的材料相关的成本(尤其是针对企业的成本)来成为威慑。这种方法鼓励公司重新考虑其物质选择并确定更可持续的替代方案。关键思想是通过使产品对产品的后消费阶段负责,激励生产商设计环保的产品。
本综述重点介绍了利用香蕉植物废料生产可生物降解包装的最新进展,强调了其在解决与传统包装材料相关的环境问题方面的关键作用。向可持续包装的转变源于迫切需要对抗塑料污染、减少对不可再生资源的依赖以及促进食品行业的可持续发展。众所周知,香蕉植物在种植和加工过程中会产生大量有机废物,为开发可生物降解包装提供了宝贵的来源。研究人员已成功将香蕉废料转化为创新、可回收和环保的包装解决方案,促进了循环经济。与传统的化石燃料材料相比,可生物降解包装具有许多优势,例如减少对环境的影响和自然分解。最近的进展导致从香蕉废料中提取出多功能生物聚合物,为包装设计提供了灵活性。挑战依然存在,包括可扩展性和经济可行性,需要持续的研究和开发。评估对食品行业的环境影响和影响对于该领域的未来发展至关重要。
本综述涵盖了各种印刷油墨树脂的分解机制,在基于聚烯烃(PO)的机械回收过程中特别关注其在挤出条件下的行为。硝酸纤维素(NC)的热降解和水解 - 在单层柔性塑料包装上使用柔性表面印刷的最常用的粘合剂,在160-210°C下的机械回收过程中同时发生。对于其他印刷墨水粘合剂,聚氨酯(PU)明显降解发生在200至300°C之间,大部分高于250°C。然而,随着湿度的参与,水解降解可以从150°C开始。也发现了乙酸纤维素(Ca)衍生物的类似效果,该衍生物是热稳定的,直到300°C,并且可以在100°C下水解。聚乙烯基丁丙(PVB)的热稳定性不受湿度的影响,根据不同类型的不同类型,热稳定性范围为170至260°C。紫外线(UV)固定的丙烯酸酯是热稳定的,直到400°C。水解降解可以在室温下进行。此外,该评论涵盖了用于打印墨水应用的不同着色剂的热稳定性,并在某些常见颜色的几种热替代品上详细说明。这项研究进一步回顾了粘合剂树脂如何影响回收酸盐的质量,这不仅是由于粘合剂树脂的降解而引起的,而且还通过塑料和粘合剂树脂之间的不混溶性引起。在高级回收过程中,主要是选择性的溶解性和热解,粘合剂树脂的存在及其降解产物仍然可能影响产品的质量。这篇评论强调了深入研究的必要性,以揭示印刷油墨成分对再生产品质量的影响。
