我们感谢“将阳光转化为太阳能燃料和化学品”任务创新挑战赛成员以及在欧洲(2019 年 10 月,SUNRISE 项目)、日本(2019 年 11 月)和美国(2020 年 11 月)举行的相应研讨会的参与者的贡献。编辑团队由欧盟委员会 Thomas Schleker 博士和欧盟委员会 Philippe Schild 博士领导,成员包括德国联邦经济和能源部 Peter Vach 博士;瑞典乌普萨拉大学 Leif Hammarström 教授;英国伦敦帝国理工学院 James Durrant 教授;英国伦敦帝国理工学院 Sacha Corby 博士;英国伦敦帝国理工学院 Oytun Babacan 博士;意大利国家研究委员会 (CNR) Alessandra Sanson 博士;美国国家可再生能源实验室 William Tumas 博士;巴西乌贝兰迪亚联邦大学 Antonio Otavio Patrocinio 教授;中国科学院韩红先教授;中国科学院李灿教授。三个路线图研讨会的领导人也为本文件做出了贡献:比利时鲁汶大学的 Carina Faber 博士;日本东京理科大学的 Akihiro Kudo 教授;日本京都大学的 Ryu Abe 教授;日本东京工业大学的 Osamu Ishitani 教授、美国 JCAP 的 Harry Atwater 教授、美国北卡罗来纳大学的 Jillian Dempsey 教授、美国劳伦斯伯克利国家实验室的 Frances Houle 博士;美国北卡罗来纳大学的 Jerry Meyer 教授、美国亚利桑那州立大学的 Ellen Stechel 教授以及多位研讨会参与者。插图由 Sacha Corby 博士、Alessandra Sanson 博士、Harry Atwater 教授和 Thomas Schleker 博士提供。
在两个较早阶段进行的成熟生命周期收获投资仅投资足以维护设备和能力投资必须具有短的回报期,将现金流最大化回到公司的总体财务目标:运营现金流(折旧之前)和减少工作资本要求的减少。(第50页)因此,BSC的发展必须从业务部门首席执行官与公司首席财务官之间的主动对话开始,就特定的财务类别和业务部门的目标。
在过去十年中,煤炭占路易斯安那州发电量的 25% 下降到 8%。尽管煤炭发电量正在下降,但它对路易斯安那州人民的影响却非常巨大。关闭本文讨论的煤电厂每年可节省 11 亿美元,预防 349 次哮喘发作,并挽救 51 条生命。2018 年,煤炭占路易斯安那州发电厂二氧化碳污染的 42%,氮氧化物污染的 46%,二氧化硫污染的 99.7%。在本文中,我们提出,关闭路易斯安那州剩余的煤电厂并用风能、太阳能和能源效率等清洁能源取而代之,不仅可以减少有害排放,还可以为路易斯安那州的居民和企业节省资金。我们还讨论了从煤炭到清洁能源的经济有效转换如何成为路易斯安那州劳动力的正确举措。
发射二极管发射二极管不会发出IR,也没有紫外线,它们的频谱完全在可见的部分中。,但LED不是冷,所有能量损失都是热损失。本文的目的是证明可重复使用热损失以通过热电模块产生光的可行性。纸张都用于冷却[1-6]。在作者的知识中,这是第一次使用热损耗来通过使用毛皮模块产生光线来提高高功率LED照明系统的全球效率。简介:发光二极管(LED)是市场上最有效的光源之一。尽管它们比传统的光源高得多,但它们将消耗的电能的大约60%至70%转化为热量。LED的功能是产生光。因此,每次转化为光线的损失都必须提高系统的效率。为了证明这个概念,我们选择了高功率LED(Bridgelux W3500)。在对该芯片板进行完整的热建模后,导致评估热损耗并通过Peltier模块预测可用的功率后,实现了一个完整而简单的电子系统来验证预测。热建模和COMSOL模拟:
世界公用事业峰会 (WUS) 一直处于帮助公用事业以弹性和转型驾驭未来的前沿。2025 年是这一著名峰会的第五次举办,将重点关注重塑公用事业行业的尖端技术。在这一届峰会上,监管机构、科技公司、顾问、政府官员和公用事业领导者都将齐聚一堂,分享他们对未来挑战和机遇的看法。这次聚会为交流、知识共享和合作提供了无与伦比的机会,共同塑造公用事业的未来。
摘要。在2050年的12个月中,世界人口预计将增加到100亿人类,这对农业的潜力极大地构成了以可持续方式提供对餐食不断发展的需求的潜力,同时最大程度地减少了不利的环境成果。全球对食品的不断增长导致了肥料的广泛使用。广泛使用的化肥可以改善农作物的产量和膨胀,但对环境,土壤以及人的健康有害。结果,传统肥料最有趣的替代品之一是纳米肥料。这些合成材料由纳米颗粒组成,这些纳米颗粒在将宏观营养素和微量营养素传递到植物根际时受到调节。必要的营养和矿物质单独或与纳米尺寸的吸附剂结合在一起,纳米材料基肥料。常规的施肥技术导致了效率低下和环境问题,因为它们通常依靠化学肥料用于磷(P)和氮(N)。因此,基于纳米技术的肥料(也称为纳米肥料或NFS)已成为有希望的治疗选择。与常规肥料相比,这些NFS提高了作物产量,提高氮摄取效率,并对环境产生较小的负面影响。本文探讨了NFS的证据,应用和利益,重点是他们如何改变农业实践并增强可持续生产的食品的生产。
这项工作属于版权。所有权利都是由出版商唯一的,全部由材料的全部或部分授权的,特别是涉及翻译,重新使用,重新使用,插图,朗诵,广播,对微观或以任何其他物理方式或任何其他物理方式,以及传输或信息的存储和电子设置,计算机或计算机或相似的方法,或者以任何其他物理方式的复制,或者使用。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构之后的管辖权索赔方面保持中立。
项目理由沼气是一种具有高甲烷浓度的复杂气体混合物,是通过生物量的厌氧消化获得的可再生资源。尽管可以燃烧产生热量或电力,但它释放了CO 2,并且具有沼气丰富的各种污染物会导致它是一种相当低级的燃料。而不是特别使用沼气的甲烷成分,而是Abime(晚期沼气至甲醇电催化)项目的目标是沼气的化学价值。通过选择性地将其中的甲烷转换为甲醇,可以转化高度有效的温室气体以提供有价值的平台化学物质。将甲烷直接转化为甲醇(M2M)被认为是催化中的圣杯之一,并且已经研究了数十年。通过单氧酶酶的结构澄清刺激了该领域的最新推动,该酶能够将甲烷氧化为甲醇并在其活性位点中含有铁或铜。复制这些酶的活性是立方体项目在催化部分的目的。但是,ABIME项目遵循一种电化学方法,其中氧化速率可以通过所施加的潜力来精心控制。因此,该项目的挑战是生产配备有效催化剂的电极以促进选择性氧化。对于这些催化剂来说,看似微不足道但重要的要求是,它们需要具有导电性才能使电子到达反应物分子。在多种候选材料中,最近出现了具有有意义的电导率的金属有机框架(MOF)用于电催化应用[1-4]。作为迈向电化学沼气氧化的第一步,这个夏季项目的目的是基于三座三苯基接头,综合并表征具有电导率的金属有机框架。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
