它指的是鱼的污染,导致颜色、质地、味道、气味、外观等发生不良变化。鱼的腐败也被称为“腐烂”。鱼腐败可能是由于酶降解、细菌降解、化学分解和机械损伤引起的。我们可以通过观察颜色变化、鱼腥味、皮肤和鳞片的粘性、肉的硬度、脊骨的变色等来表征腐烂的鱼。
经过调查,导致故障的两个主要因素是温度和耐化学性问题。应用的工作温度比 Delrin® 的最高推荐温度高 70F / 21C。消毒过程涉及使用苛性钠/苛性钠进行冲洗,这不建议用于 Delrin®,并且已知会腐蚀 Delrin® 并化学分解材料。选择新材料时要考虑的第三个重要参数是出色的轴承耐磨性能的重要性,因为该组件用作轴承。在评估了三个主要参数后,Techtron® HPV PPS 被选为替代 Delrin® 的最佳候选材料。
持久性是农药以其原始形式保持活跃和可行的能力,然后再对化学分解以变得不活跃。化学物质中持久性的共同度量称为半衰期。半衰期是用于分解的原始化学量所需的时间。报告的化学物质或农药的半衰期越长,化学物质或农药越持续。有时需要持续的农药,因为它们会提供长期的害虫控制并减少对重复应用的需求。但是,如果持续的农药在环境中也是流动的,那么持续的农药也可能导致意外的地点,植物,动物或人类问题。如果您使用的是持续的农药,则由于不当处理,漂移,径流,侵蚀或浸出而导致意外后果非常重要。
多模式航天器推进系统集成了两种或多种使用共享推进剂的推进模式。伊利诺伊大学厄巴纳-香槟分校目前正在与 Froberg Aerospace, LLC 合作开发一种结合化学分解模式和电喷雾模式的多模式系统。从根本上讲,多模式航天器推进系统由推进器、电源处理单元和推进剂进料系统组成。本文详细介绍了之前开发的原型单推进剂电喷雾推进器的电源处理单元和进料系统的持续开发。电源处理单元由两个独立的升压电路组成,一个在电喷雾操作期间提供 3.25 kV DC,另一个在化学模式操作期间提供 24 V DC。进料系统架构是一个单一的气体加压系统,每个操作模式都有不同的流路,并且必须在电喷雾模式下提供约 850 nL/s 的体积流速,在化学模式下提供 100 μL/s 的体积流速。
对空气伽马射线图像作为土壤特性指标的实证研究 - 新南威尔士州沃加沃加。Phil Bierwirth 1 、Paul Gessler 2 和 Dermot McKane 3 1 澳大利亚地质调查组织,邮政信箱 378,堪培拉,ACT 2601 2 CSIRO 土壤部,邮政信箱 639,堪培拉,ACT 2601 3 新南威尔士州土地和水资源保护部,邮政信箱 639,堪培拉,ACT 2601 电子邮件:pbierwir@agso.gov.au,电话:(06)2499231,传真:(06) 2499970 摘要 通过对土壤样本中放射性元素丰度和土壤特性的实证分析,可以评估机载伽马射线图像的信息内容。在地质学、地貌学和土壤发生学的背景下进行解释。结果表明,伽马图像能够绘制土壤特性,如 pH 值、成分/营养物质和质地,但伽马响应通常是矿物、地貌和成土过程的混合。在相对地貌不活跃的地区,钾映射浸出和酸度,而钍定义粘土类型和含量。一般而言,包括不同元素迁移在内的多种影响的混合会阻碍简单的解释。解释模型应包括根据地貌和地质将数据细分为不同领域。简介 本文报告了一项试点研究的重要发现,该研究考察了机载伽马辐射数据作为土壤和土地退化快速测绘工具的效用(Bierwirth,1996 年)。航空伽马光谱法通过测量 K、Th 和 U 放射性衰变产生的伽马射线丰度,提供岩石/土壤层顶部 30-45 厘米的地球化学空间图像,植被的影响很小。在特定的景观中,K、U 和 Th 的空间分布以及 U 和 Th 的衰变产物将取决于物理和化学风化过程 - 与主要矿物有关,这些矿物的风化模式受该地区的地貌状况和气候影响。风、地表冲刷和冲积过程对矿物的物理运输占放射性元素分布的大部分(Martz 和 de Jong,1990 年)。矿物成分发生化学分解后,大多数元素都具有可移动性(可溶解或附着于胶体),具体取决于化学条件,而化学条件又可能与矿物学、地貌年龄和气候因素有关。例如,水解作用会释放出钾长石和云母中的 K +,用于伊利石的形成,吸附到其他粘土上或通过流体迁移去除(Wedepohl,1969 年)。酸性溶液将在风化早期阶段取代 H +,从而有助于 K + 的释放,这最初也可能会增加 pH 值 (Wollast,1967)。因此,空气中检测到的 K 分布的空间模式将取决于土壤的矿物学和年龄(即风化状态)。由于空气中的 U 和 Th 数据分别来自衰变产物 214 Bi 和 208 Tl 产生的伽马辐射,因此了解这些元素的所有母体具有相当长的半衰期的流动性方面非常重要。在铀衰变链中,同位素