摘要:双人操作对于它在与环境交互时为机器人提供增加功能的潜力以及扩大可用的操作动作的数量而有价值。但是,要使机器人执行双字操作,系统必须具有一个强大的控制框架,以对每个子系统进行定位和生成轨迹和命令,以允许成功进行合作操作以及对每个单个子系统的足够控制。提出的方法建议使用多个通过使用光学跟踪定位方法充当单个双层操作系统的多个移动操纵器平台。框架的性能取决于本地化的准确性。由于命令主要是高级的,因此可以在此框架内使用移动操纵器和固定操纵器的任何数字和组合。我们使用两个不同的全向移动操纵器在Pybullet仿真环境中进行测试来证明该系统的功能,以及使用两个四倍体操纵器的真实实验。
抽象的物镜经硫代蛋白淀粉样蛋白心肌病(ATTR-CM)是由沉积野生型或突变的转染素引起的浸润性心脏疾病。作为特性疾病,我们试图确定其特发性高度心房(AV)块的患者的患病率,需要永久性起搏器(PPM)。在2019年11月至2021年11月之间,经过PPM植入PPM的70-85岁的连续患者提供了3,3-二磷酸-1,2-二磷酸-1,2-丙二烷二键二羧酸(DPD)扫描。人口统计学,合并症,心电图和成像数据。结果39例患者(男性为79.5%,设备植入76.2(2.9)年)进行了DPD扫描。3/39(7.7%,全男性)的结果与属性(佩鲁吉尼2或3级)一致。平均DPD扫描的人的最大壁厚为19.0 mm(3.6毫米),而阴性扫描的患者为11.4 mm(2.7 mm)(p = 0.06)。所有被诊断为ATTR-CM的患者患有脊柱狭窄,两名患有腕管综合征。结论应在需要永久起搏的老年患者中考虑高度AV块,尤其是在存在左心室肥大,腕管综合征或脊柱狭窄的情况下。
摘要在受支持的金属纳米颗粒中,金属原子的化学潜力是与纳米颗粒的催化活性和稳定性相关的重要描述符。在这里,我们得出了与粒子接触区域的半径与支撑𝜇 𝜇 𝜇𝑀的半径和金属 /支撑界面()的粘附能有关的表达,该表达式假定颗粒具有球形帽的形状,但与支撑()的形状相关,但在金属表面能量中增加了c and的经验校正和近距离降低的经验校正。We then show that, at any assumed contact angle, we can simultaneously fit previously-reported measurements of both calorimetric (from heats of 𝜇 𝑀 metal vapor adsorption during nanoparticle growth by vapor deposition) versus metal coverage data and the He + low-energy ion scattering (LEIS) intensities for the metal and/or support versus metal coverage (using our recently-developed spherical cap model用于定量的leis强度),以确定粒径与覆盖范围。只有一种接触角度的选择给出了一对接触角的值,并且与球形粒子平衡形状的Young-dupré𝐸方程一致。在这种平衡形状下,我们应用了该球形盖模型(SCM),以重新分析微钙化金属化学电位和LEIS信号与九种金属 /支撑组合的覆盖数据,以前通过假设颗粒具有半球形盖的形状,即< / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div,接触角为90。我们表明,这种修订的方法与量热法和Leis数据达成了密切的一致性;最佳拟合的接触角从64到84不等,纠正了较早的90的假设。这些结果提供了显着的准确性提高:粒度与覆盖,金属化学势与尺寸和覆盖范围,金属 /支撑粘附能以及CEO 2(111)上的CU,AG和AU的接触角(111),MGO上的Ni(100),AG(100),Fe 3 O 4(111)和TIO 2(100)和TiO 2(100)以及AG,Ni-ni和ni-support ni-support。这种修订的方法比早期半球形帽模型(HCM)更广泛地适用。
摘要。我们研究了重子化学势 µ B 对平衡和非平衡状态下夸克胶子等离子体 (QGP) 特性的影响。平衡状态下 QGP 的描述基于动态准粒子模型 (DQPM) 中的有效传播子和耦合,该模型与格点量子色动力学 (QCD) 中解禁温度 T c 以上的部分子系统的状态方程相匹配。我们计算了(T,µ B)平面内的传输系数,例如剪切粘度η 与体积粘度 ζ 与熵密度 s 之比,即 η/s 和 ζ/s,并将其与 µ B = 0 时的其他模型结果进行比较。QGP 的非平衡研究是在部分子-强子-弦动力学 (PHSD) 传输方法中进行的,该方法扩展到部分子领域,通过明确计算在实际温度 T 和重子化学势 µ B 下评估的每个单独时空单元中部分子散射的总和微分部分子散射截面(基于 DQPM 传播子和耦合)。在相对论重离子碰撞的不同可观测量中研究了它们的 µ B 依赖性的轨迹,重点关注 7.7 GeV ≤ √ s NN ≤ 200 GeV 能量范围内的定向和椭圆流系数 v 1 、v 2。