摘要。我们研究了重子化学势 µ B 对平衡和非平衡状态下夸克胶子等离子体 (QGP) 特性的影响。平衡状态下 QGP 的描述基于动态准粒子模型 (DQPM) 中的有效传播子和耦合,该模型与格点量子色动力学 (QCD) 中解禁温度 T c 以上的部分子系统的状态方程相匹配。我们计算了(T,µ B)平面内的传输系数,例如剪切粘度η 与体积粘度 ζ 与熵密度 s 之比,即 η/s 和 ζ/s,并将其与 µ B = 0 时的其他模型结果进行比较。QGP 的非平衡研究是在部分子-强子-弦动力学 (PHSD) 传输方法中进行的,该方法扩展到部分子领域,通过明确计算在实际温度 T 和重子化学势 µ B 下评估的每个单独时空单元中部分子散射的总和微分部分子散射截面(基于 DQPM 传播子和耦合)。在相对论重离子碰撞的不同可观测量中研究了它们的 µ B 依赖性的轨迹,重点关注 7.7 GeV ≤ √ s NN ≤ 200 GeV 能量范围内的定向和椭圆流系数 v 1 、v 2。
摘要:双人操作对于它在与环境交互时为机器人提供增加功能的潜力以及扩大可用的操作动作的数量而有价值。但是,要使机器人执行双字操作,系统必须具有一个强大的控制框架,以对每个子系统进行定位和生成轨迹和命令,以允许成功进行合作操作以及对每个单个子系统的足够控制。提出的方法建议使用多个通过使用光学跟踪定位方法充当单个双层操作系统的多个移动操纵器平台。框架的性能取决于本地化的准确性。由于命令主要是高级的,因此可以在此框架内使用移动操纵器和固定操纵器的任何数字和组合。我们使用两个不同的全向移动操纵器在Pybullet仿真环境中进行测试来证明该系统的功能,以及使用两个四倍体操纵器的真实实验。
电极界面是电子和电化学设备不可或缺的组成部分。它们在工作条件下的稳定性对于无数应用至关重要,例如电池、非易失性存储器、忆阻器、压电换能器和电容器。[1–5] 众所周知,材料的热力学稳定性受限于其成分的化学势(活性)的固定范围。[6] 例如,只有当与氧分压相关的氧化学势高于氧化物的形成焓时,氧化物才是稳定的。除了(原子)成分的化学势之外,通过电荷中性条件决定材料中费米能的电子化学势也必须保持在一定范围内。相关的电化学不稳定性可以通过两种方式引起:i)通过形成自补偿缺陷;[7] ii)通过
了解致密强子物质的行为是核物理学的一个核心目标,因为它决定着超新星和中子星等天体物理物体的性质和动力学。由于量子色动力学 (QCD) 的非微扰性质,人们对这些极端条件下的强子物质知之甚少。在这里,格点 QCD 计算用于计算热力学量和 QCD 状态方程,这些方程发生在具有受控系统不确定性的广泛同位旋化学势范围内。当化学势较小时,与手性微扰理论一致。与大化学势下的微扰 QCD 进行比较,可以估计超导相中的间隙,并且该量与微扰测定结果一致。由于同位旋化学势的配分函数 μ I 限制了重子化学势的配分函数 μ B ¼ 3 μ I = 2 ,这些计算还首次在很宽的重子密度范围内对对称核物质状态方程提供了严格的非微扰 QCD 界限。
摘要在受支持的金属纳米颗粒中,金属原子的化学潜力是与纳米颗粒的催化活性和稳定性相关的重要描述符。在这里,我们得出了与粒子接触区域的半径与支撑𝜇 𝜇 𝜇𝑀的半径和金属 /支撑界面()的粘附能有关的表达,该表达式假定颗粒具有球形帽的形状,但与支撑()的形状相关,但在金属表面能量中增加了c and的经验校正和近距离降低的经验校正。We then show that, at any assumed contact angle, we can simultaneously fit previously-reported measurements of both calorimetric (from heats of 𝜇 𝑀 metal vapor adsorption during nanoparticle growth by vapor deposition) versus metal coverage data and the He + low-energy ion scattering (LEIS) intensities for the metal and/or support versus metal coverage (using our recently-developed spherical cap model用于定量的leis强度),以确定粒径与覆盖范围。只有一种接触角度的选择给出了一对接触角的值,并且与球形粒子平衡形状的Young-dupré𝐸方程一致。在这种平衡形状下,我们应用了该球形盖模型(SCM),以重新分析微钙化金属化学电位和LEIS信号与九种金属 /支撑组合的覆盖数据,以前通过假设颗粒具有半球形盖的形状,即< / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div> < / div,接触角为90。我们表明,这种修订的方法与量热法和Leis数据达成了密切的一致性;最佳拟合的接触角从64到84不等,纠正了较早的90的假设。这些结果提供了显着的准确性提高:粒度与覆盖,金属化学势与尺寸和覆盖范围,金属 /支撑粘附能以及CEO 2(111)上的CU,AG和AU的接触角(111),MGO上的Ni(100),AG(100),Fe 3 O 4(111)和TIO 2(100)和TiO 2(100)以及AG,Ni-ni和ni-support ni-support。这种修订的方法比早期半球形帽模型(HCM)更广泛地适用。
在存在化学势和温度的情况下,我们全息地研究了具有临界点的非共形量子场论中的子区域复杂性。我们提出了一种新的解释,根据这种解释,需要指定(更多)更少信息的状态表征(不)稳定的热力学解。我们分别观察到化学势和温度对全息子区域复杂性的增加和减少的影响。这两种相反的行为导致混合状态的子区域复杂性与零温度共形场论的该值相同。我们还提出了全息子区域复杂性的最小值和最大值(临界点附近的值)之间差异的新描述,作为进行计算工作的资源,以从远离临界点的状态准备接近临界点的状态。我们还计算了临界指数。
摘要:在本研究中,我们探索了 (1+1) 维 QED(大规模 Schwinger 模型)中有限温度下手性磁效应 (CME) 的实时动态。通过在淬火过程中引入手性化学势 µ 5,我们使系统失去平衡,并分析感应矢量电流及其随时间的变化。修改了哈密顿量以包括时间相关的手性化学势,从而允许在量子计算框架内研究 CME。我们采用量子虚时间演化 (QITE) 算法来研究热状态,并利用 Suzuki-Trotter 分解进行实时演化。这项研究深入了解了用于建模 CME 的量子模拟能力,并为研究低维量子场论中的手性动力学提供了途径。
摘要:我们提出了一个新型的带有有限的baryon和Isospin化学势的QCD中的新型重型涡流相。众所周知,均质带电的PION冷凝物在有限的等音化学势下作为基态出现,因此,带有施加磁场的Abrikosov Vortex晶格出现。我们首先证明具有与常规Abrikosov涡流具有相同量化的磁通量的涡流,一旦我们考虑了对涡旋内部核心内部中性亲的调制,将由第三个同型Skyrmions捕获的Baryon数。因此,这种涡旋 - 西卡米式状态被称为Baryonic涡流。我们进一步揭示,当巴属化学电位高于临界值时,重型涡流会从带电的Pion凝结中测量负张力。这意味着在没有外部磁场的情况下自发出现此类涡旋的相位,将在高baryon密度下接管基态。这样的新相促进了QCD相图的理解,并与中子星内的磁场的产生有关。
[a] 条件:CD 3 CN,298 K,[ 1 ] = [ 2 + ](每个实验的初始浓度报告于表 S2 中),l irr = 365 nm。[b] 通过化学光化测定法测定的 365 nm 处的光子流。[c] 反应 3 在稳态下的速率;参见图 2 的符号约定。[d] 循环的量子产率;括号中为每个循环吸收的光子数(1/ F cy )。[e] 根据模拟浓度值确定的反应 1 的残余化学势。[f] 根据实验浓度值确定的反应 3 的残余化学势。[g] 在稳态操作循环中,自组装步骤所耗散的自由能。[h] 非平衡稳态下自组装步骤中储存的自由能密度。 [i] 能量转换效率,计算为 𝑇𝛥 !" 𝛴 #$ 与稳定状态下一个运行周期内吸收的总自由能之比。
我们研究了嵌入在N细胞星形的Quarbits网络中的单细胞量子电池的稳态充电过程,每个电池都与Fermion储存库相互作用,分别在平衡和非平衡场景中进行了集体和单独的相互作用。我们在两种情况下都发现了最佳的稳态充电,它可以随储层的化学潜力和化学势不同而单调地生长。储层的高基本温度在所有参数方面都具有破坏性作用。我们指出,无论非平衡条件的强度如何,电池相应储层的高基础化学势都可以显着增强充电过程。另一方面,弱耦合强度可以强烈抑制充电。因此,我们的结果可以抵消自我排放的有害E FF,并为在没有外部充电场的情况下增强开放量子电池的稳定充电提供了宝贵的指南。